These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 21858721)
21. Electrospinning of poly(lactic acid) stereocomplex nanofibers. Tsuji H; Nakano M; Hashimoto M; Takashima K; Katsura S; Mizuno A Biomacromolecules; 2006 Dec; 7(12):3316-20. PubMed ID: 17154458 [TBL] [Abstract][Full Text] [Related]
22. Enhancement in Crystallizability of Poly( Baimark Y; Srihanam P; Srisuwan Y; Phromsopha T Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36236039 [TBL] [Abstract][Full Text] [Related]
23. Nano-ordered surface morphologies by stereocomplexation of the enantiomeric polylactide chains: specific interactions of surface-immobilized poly(D-lactide) and poly(ethylene glycol)-poly(L-lactide) block copolymers. Nakajima M; Nakajima H; Fujiwara T; Kimura Y; Sasaki S Langmuir; 2014 Nov; 30(46):14030-8. PubMed ID: 25365934 [TBL] [Abstract][Full Text] [Related]
24. Poly(L-lactic acid) nanocylinders as nanofibrous structures for macroporous gelatin scaffolds. Lee JB; Jeong SI; Bae MS; Heo DN; Heo JS; Hwang YS; Lee HW; Kwon IK J Nanosci Nanotechnol; 2011 Jul; 11(7):6371-6. PubMed ID: 22121718 [TBL] [Abstract][Full Text] [Related]
25. Preferential Stereocomplex Crystallization in Enantiomeric Blends of Cellulose Acetate-g-Poly(lactic acid)s with Comblike Topology. Bao J; Han L; Shan G; Bao Y; Pan P J Phys Chem B; 2015 Oct; 119(39):12689-98. PubMed ID: 26352621 [TBL] [Abstract][Full Text] [Related]
26. Crystallization, rheology and mechanical properties of the blends of poly(l-lactide) with supramolecular polymers based on poly(d-lactide)-poly(ε-caprolactone- Jing Z; Li J; Xiao W; Xu H; Hong P; Li Y RSC Adv; 2019 Aug; 9(45):26067-26079. PubMed ID: 35531016 [TBL] [Abstract][Full Text] [Related]
27. In vitro biocompatibility evaluation of bioresorbable copolymers prepared from L-lactide, 1, 3-trimethylene carbonate, and glycolide for cardiovascular applications. Shen X; Su F; Dong J; Fan Z; Duan Y; Li S J Biomater Sci Polym Ed; 2015; 26(8):497-514. PubMed ID: 25783945 [TBL] [Abstract][Full Text] [Related]
29. Novel poly(L-lactic acid)/hyaluronic acid macroporous hybrid scaffolds: characterization and assessment of cytotoxicity. Antunes JC; Oliveira JM; Reis RL; Soria JM; Gómez-Ribelles JL; Mano JF J Biomed Mater Res A; 2010 Sep; 94(3):856-69. PubMed ID: 20336752 [TBL] [Abstract][Full Text] [Related]
30. Enhanced stereocomplex formation of poly(L-lactic acid) and poly(D-lactic acid) in the presence of stereoblock poly(lactic acid). Fukushima K; Chang YH; Kimura Y Macromol Biosci; 2007 Jun; 7(6):829-35. PubMed ID: 17541929 [TBL] [Abstract][Full Text] [Related]
31. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Sultana N; Wang M Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057 [TBL] [Abstract][Full Text] [Related]
32. 3D scaffold of PLLA/pearl and PLLA/nacre powder for bone regeneration. Liu Y; Huang Q; Feng Q Biomed Mater; 2013 Dec; 8(6):065001. PubMed ID: 24225162 [TBL] [Abstract][Full Text] [Related]
33. In vitro cell response to differences in poly-L-lactide crystallinity. Park A; Cima LG J Biomed Mater Res; 1996 May; 31(1):117-30. PubMed ID: 8731156 [TBL] [Abstract][Full Text] [Related]
34. Study on poly(L-lactide-co-trimethylene carbonate): synthesis and cell compatibility of electrospun film. Ji LJ; Lai KL; He B; Wang G; Song LQ; Wu Y; Gu ZW Biomed Mater; 2010 Aug; 5(4):045009. PubMed ID: 20644241 [TBL] [Abstract][Full Text] [Related]
35. Construction of fully biodegradable poly(L-lactic acid)/poly(D-lactic acid)-poly(lactide-co-caprolactone) block polymer films: Viscoelasticity, processability and flexibility. He W; Ye L; Coates P; Caton-Rose F; Zhao X Int J Biol Macromol; 2023 May; 236():123980. PubMed ID: 36898455 [TBL] [Abstract][Full Text] [Related]
36. Force Estimation on the Contact of Poly(l,l-lactide) and Poly(d,d-lactide) Surfaces Regarding Stereocomplex Formation. Ajiro H; Takahama S; Mizukami M; Kan K; Akashi M; Kurihara K Langmuir; 2016 Sep; 32(37):9501-6. PubMed ID: 27575700 [TBL] [Abstract][Full Text] [Related]
37. Effect of starch-based biomaterials on the in vitro proliferation and viability of osteoblast-like cells. Marques AP; Cruz HR; Coutinho OP; Reis RL J Mater Sci Mater Med; 2005 Sep; 16(9):833-42. PubMed ID: 16167112 [TBL] [Abstract][Full Text] [Related]
38. Preparation and properties of biodegradable poly(L-lactide)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites with enhanced crystallization rate via simple melt compounding. Yu J; Qiu Z ACS Appl Mater Interfaces; 2011 Mar; 3(3):890-7. PubMed ID: 21361280 [TBL] [Abstract][Full Text] [Related]
39. Effect of stereocomplex crystal and flexible segments on the crystallization and tensile behavior of poly(l-lactide). Li X; Zhang X; Liu G; Yang Z; Yang B; Qi Y; Wang R; Wang DY RSC Adv; 2018 Aug; 8(50):28453-28460. PubMed ID: 35542484 [TBL] [Abstract][Full Text] [Related]
40. In vitro biocompatibility of different polyester membranes. Vaquette C; Fawzi-Grancher S; Lavalle P; Frochot C; Viriot ML; Muller S; Wang X Biomed Mater Eng; 2006; 16(4 Suppl):S131-6. PubMed ID: 16823104 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]