These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 21859105)

  • 1. Electrostatic fields near the active site of human aldose reductase: 2. New inhibitors and complications caused by hydrogen bonds.
    Xu L; Cohen AE; Boxer SG
    Biochemistry; 2011 Oct; 50(39):8311-22. PubMed ID: 21859105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic fields near the active site of human aldose reductase: 1. New inhibitors and vibrational stark effect measurements.
    Webb LJ; Boxer SG
    Biochemistry; 2008 Feb; 47(6):1588-98. PubMed ID: 18205401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric fields at the active site of an enzyme: direct comparison of experiment with theory.
    Suydam IT; Snow CD; Pande VS; Boxer SG
    Science; 2006 Jul; 313(5784):200-4. PubMed ID: 16840693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting mutation-induced Stark shifts in the active site of a protein with a polarized force field.
    Wang X; He X; Zhang JZ
    J Phys Chem A; 2013 Jul; 117(29):6015-23. PubMed ID: 23517423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlating Nitrile IR Frequencies to Local Electrostatics Quantifies Noncovalent Interactions of Peptides and Proteins.
    Deb P; Haldar T; Kashid SM; Banerjee S; Chakrabarty S; Bagchi S
    J Phys Chem B; 2016 May; 120(17):4034-46. PubMed ID: 27090068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the electrostatics of active site microenvironments along the catalytic cycle for Escherichia coli dihydrofolate reductase.
    Liu CT; Layfield JP; Stewart RJ; French JB; Hanoian P; Asbury JB; Hammes-Schiffer S; Benkovic SJ
    J Am Chem Soc; 2014 Jul; 136(29):10349-60. PubMed ID: 24977791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrile Probes of Electric Field Agree with Independently Measured Fields in Green Fluorescent Protein Even in the Presence of Hydrogen Bonding.
    Slocum JD; Webb LJ
    J Am Chem Soc; 2016 May; 138(20):6561-70. PubMed ID: 27128688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the interactional details between aldose reductase (AKR1B1) and 3-Mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid through molecular dynamics simulations.
    Zhan JY; Ma K; Zheng QC; Yang GH; Zhang HX
    J Biomol Struct Dyn; 2019 Apr; 37(7):1724-1735. PubMed ID: 29671687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation of vibrational shifts of nitrile probes in the active site of ketosteroid isomerase upon ligand binding.
    Layfield JP; Hammes-Schiffer S
    J Am Chem Soc; 2013 Jan; 135(2):717-25. PubMed ID: 23210919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conserved electrostatic fields at the Ras-effector interface measured through vibrational Stark effect spectroscopy explain the difference in tilt angle in the Ras binding domains of Raf and RalGDS.
    Walker DM; Wang R; Webb LJ
    Phys Chem Chem Phys; 2014 Oct; 16(37):20047-60. PubMed ID: 25127074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond p
    First JT; Novelli ET; Webb LJ
    J Phys Chem B; 2020 Apr; 124(16):3387-3399. PubMed ID: 32212657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrile Infrared Intensities Characterize Electric Fields and Hydrogen Bonding in Protic, Aprotic, and Protein Environments.
    Weaver JB; Kozuch J; Kirsh JM; Boxer SG
    J Am Chem Soc; 2022 May; 144(17):7562-7567. PubMed ID: 35467853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying the Effects of Hydrogen Bonding on Nitrile Frequencies in GFP: Beyond Solvent Exposure.
    First JT; Slocum JD; Webb LJ
    J Phys Chem B; 2018 Jul; 122(26):6733-6743. PubMed ID: 29874077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Docking and molecular dynamics studies toward the binding of new natural phenolic marine inhibitors and aldose reductase.
    Wang Z; Ling B; Zhang R; Suo Y; Liu Y; Yu Z; Liu C
    J Mol Graph Model; 2009 Sep; 28(2):162-9. PubMed ID: 19616461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AMOEBA Force Field Predicts Accurate Hydrogen Bond Counts of Nitriles in SNase by Revealing Water-Protein Interaction in Vibrational Absorption Frequencies.
    Lin YC; Ren P; Webb LJ
    J Phys Chem B; 2023 Jun; 127(25):5609-5619. PubMed ID: 37339399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific conversion of cysteine thiols into thiocyanate creates an IR probe for electric fields in proteins.
    Fafarman AT; Webb LJ; Chuang JI; Boxer SG
    J Am Chem Soc; 2006 Oct; 128(41):13356-7. PubMed ID: 17031938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase.
    Wang X; Zhang JZ; He X
    J Chem Phys; 2015 Nov; 143(18):184111. PubMed ID: 26567650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decomposition of vibrational shifts of nitriles into electrostatic and hydrogen-bonding effects.
    Fafarman AT; Sigala PA; Herschlag D; Boxer SG
    J Am Chem Soc; 2010 Sep; 132(37):12811-3. PubMed ID: 20806897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factorizing selectivity determinants of inhibitor binding toward aldose and aldehyde reductases: structural and thermodynamic properties of the aldose reductase mutant Leu300Pro-fidarestat complex.
    Petrova T; Steuber H; Hazemann I; Cousido-Siah A; Mitschler A; Chung R; Oka M; Klebe G; El-Kabbani O; Joachimiak A; Podjarny A
    J Med Chem; 2005 Sep; 48(18):5659-65. PubMed ID: 16134934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of human aldehyde reductase: characterization of the active site pocket.
    Barski OA; Gabbay KH; Grimshaw CE; Bohren KM
    Biochemistry; 1995 Sep; 34(35):11264-75. PubMed ID: 7669785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.