BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 21859123)

  • 1. Chemistry of trans-resveratrol with singlet oxygen: [2+2] addition, [4+2] addition, and formation of the phytoalexin moracin M.
    Celaje JA; Zhang D; Guerrero AM; Selke M
    Org Lett; 2011 Sep; 13(18):4846-9. PubMed ID: 21859123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron spin resonance and luminescence spectroscopic observation and kinetic study of chemical and physical singlet oxygen quenching by resveratrol in methanol.
    Jung MY; Choi DS
    J Agric Food Chem; 2010 Nov; 58(22):11888-95. PubMed ID: 21038912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photo-induced chemical reaction of trans-resveratrol.
    Zhao Y; Shi M; Ye JH; Zheng XQ; Lu JL; Liang YR
    Food Chem; 2015 Mar; 171():137-43. PubMed ID: 25308653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structures of two novel trimeric stilbenes obtained by horseradish peroxidase catalyzed biotransformation of trans-resveratrol and (-)-epsilon-viniferin.
    Wilkens A; Paulsen J; Wray V; Winterhalter P
    J Agric Food Chem; 2010 Jun; 58(11):6754-61. PubMed ID: 20455561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerobic oxidative coupling of resveratrol and its analogues by visible light using mesoporous graphitic carbon nitride (mpg-C(3)N(4)) as a bioinspired catalyst.
    Song T; Zhou B; Peng GW; Zhang QB; Wu LZ; Liu Q; Wang Y
    Chemistry; 2014 Jan; 20(3):678-82. PubMed ID: 24307535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon-Carbon Double Bond and Resorcinol in Resveratrol and Its Analogues: What Is the Characteristic Structure in Quenching Singlet Oxygen?
    Kong Q; Ren X; Qi J; Yu J; Lu J; Wang S
    Biomolecules; 2019 Jul; 9(7):. PubMed ID: 31323995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab initio calculations on the (1)O2 quenching mechanism by trans-resveratrol.
    Mazzone G; Alberto ME; Russo N; Sicilia E
    Phys Chem Chem Phys; 2014 Jul; 16(25):12773-81. PubMed ID: 24836609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of isomers and analogues of resveratrol dimers selectively quenching singlet oxygen by UHPLC-ESI-MS
    Yin X; Yu J; Kong Q; Ren X
    Food Chem; 2017 Dec; 237():1101-1111. PubMed ID: 28763956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pallidol, a resveratrol dimer from red wine, is a selective singlet oxygen quencher.
    He S; Jiang L; Wu B; Pan Y; Sun C
    Biochem Biophys Res Commun; 2009 Feb; 379(2):283-7. PubMed ID: 19101516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scirpusin A, a hydroxystilbene dimer from Xinjiang wine grape, acts as an effective singlet oxygen quencher and DNA damage protector.
    Kong Q; Ren X; Jiang L; Pan Y; Sun C
    J Sci Food Agric; 2010 Apr; 90(5):823-8. PubMed ID: 20355118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regioselective oxidative coupling of 4-hydroxystilbenes: synthesis of resveratrol and epsilon-viniferin (E)-dehydrodimers.
    Sako M; Hosokawa H; Ito T; Iinuma M
    J Org Chem; 2004 Apr; 69(7):2598-600. PubMed ID: 15049668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secondary metabolites of Bagassa guianensis Aubl. wood: a study of the chemotaxonomy of the Moraceae family.
    Royer M; Herbette G; Eparvier V; Beauchêne J; Thibaut B; Stien D
    Phytochemistry; 2010 Oct; 71(14-15):1708-13. PubMed ID: 20655556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the mechanism of stilbenes to quench singlet oxygen based on the key structures of resveratrol and its analogues.
    Li X; Cai X; Zeng Q; Ren X; Kong Q
    Food Chem; 2023 Mar; 403():134350. PubMed ID: 36174338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitized photoxygenation of piroxicam in neat solvents and solvent mixtures.
    Lemp E; Zanocco AL; Günther G
    J Photochem Photobiol B; 2001 Dec; 65(2-3):165-70. PubMed ID: 11809375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Singlet Oxygen Quenching by Resveratrol Derivatives.
    Monsour CG; Tadle AC; Tafolla-Aguirre BJ; Lakshmanan N; Yoon JH; Sabio RB; Selke M
    Photochem Photobiol; 2023 Mar; 99(2):672-679. PubMed ID: 36031343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional group manoeuvring for tuning stability and reactivity: synthesis of cicerfuran, moracins (D, E, M) and chromene-fused benzofuran-based natural products.
    Rao MLN; Murty VN; Nand S
    Org Biomol Chem; 2017 Nov; 15(44):9415-9423. PubMed ID: 29095465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantioselectivity in visible light-induced, singlet oxygen [2+4] cycloaddition reactions (type II photooxygenations) of 2-pyridones.
    Wiegand C; Herdtweck E; Bach T
    Chem Commun (Camb); 2012 Oct; 48(82):10195-7. PubMed ID: 22962664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the properties of the two enantiomers of trans-δ-viniferin, a resveratrol derivative: antioxidant activity, biochemical and molecular modeling studies of its interactions with hemoglobin.
    Ficarra S; Tellone E; Pirolli D; Russo A; Barreca D; Galtieri A; Giardina B; Gavezzotti P; Riva S; De Rosa MC
    Mol Biosyst; 2016 Apr; 12(4):1276-86. PubMed ID: 26883599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two new isoarylbenzofuran diglucosides from the root bark of Morus alba.
    Park JH; Jung YJ; Jung JW; Shrestha S; Han D; Lim DW; Baek NI
    J Asian Nat Prod Res; 2015; 17(4):357-63. PubMed ID: 25401999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viniferin formation by COX-1: evidence for radical intermediates during co-oxidation of resveratrol.
    Szewczuk LM; Lee SH; Blair IA; Penning TM
    J Nat Prod; 2005 Jan; 68(1):36-42. PubMed ID: 15679314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.