BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 21859141)

  • 1. Cooperativity in long α- and 3(10)-helical polyalanines: both electrostatic and van der Waals interactions are essential.
    Hua S; Xu L; Li W; Li S
    J Phys Chem B; 2011 Oct; 115(39):11462-9. PubMed ID: 21859141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of fully optimized alpha- and 3(10)-helices with extended beta-strands. An ONIOM density functional theory study.
    Wieczorek R; Dannenberg JJ
    J Am Chem Soc; 2004 Nov; 126(43):14198-205. PubMed ID: 15506786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron density redistribution accounts for half the cooperativity of alpha helix formation.
    Morozov AV; Tsemekhman K; Baker D
    J Phys Chem B; 2006 Mar; 110(10):4503-5. PubMed ID: 16526672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of vibrational entropy on the stability of unsolvated peptide helices with increasing length.
    Rossi M; Scheffler M; Blum V
    J Phys Chem B; 2013 May; 117(18):5574-84. PubMed ID: 23570562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enthalpies of hydrogen-bonds in alpha-helical peptides. An ONIOM DFT/AM1 study.
    Wieczorek R; Dannenberg JJ
    J Am Chem Soc; 2005 Oct; 127(42):14534-5. PubMed ID: 16231881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computing van der Waals energies in the context of the rotamer approximation.
    Grigoryan G; Ochoa A; Keating AE
    Proteins; 2007 Sep; 68(4):863-78. PubMed ID: 17554777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linear interaction energy models for beta-secretase (BACE) inhibitors: Role of van der Waals, electrostatic, and continuum-solvation terms.
    Tounge BA; Rajamani R; Baxter EW; Reitz AB; Reynolds CH
    J Mol Graph Model; 2006 May; 24(6):475-84. PubMed ID: 16293430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of aqueous solvation upon alpha-helix formation for polyalanines.
    Salvador P; Asensio A; Dannenberg JJ
    J Phys Chem B; 2007 Jun; 111(25):7462-6. PubMed ID: 17552560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen-bond cooperativity, vibrational coupling, and dependence of helix stability on changes in amino acid sequence in small 3 10-helical peptides. A density functional theory study.
    Wieczorek R; Dannenberg JJ
    J Am Chem Soc; 2003 Nov; 125(46):14065-71. PubMed ID: 14611243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel scoring function for modeling structures of oligomers of transmembrane alpha-helices.
    Park Y; Elsner M; Staritzbichler R; Helms V
    Proteins; 2004 Nov; 57(3):577-85. PubMed ID: 15382237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized energy-based fragmentation approach and its applications to macromolecules and molecular aggregates.
    Li S; Li W; Ma J
    Acc Chem Res; 2014 Sep; 47(9):2712-20. PubMed ID: 24873495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure and binding energies of the van der Waals complexes of Ar and N2 with phenol and its cation, studied by high level ab initio and density functional theory calculations.
    Vincent MA; Hillier IH; Morgado CA; Burton NA; Shan X
    J Chem Phys; 2008 Jan; 128(4):044313. PubMed ID: 18247955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cutoff size need not strongly influence molecular dynamics results for solvated polypeptides.
    Beck DA; Armen RS; Daggett V
    Biochemistry; 2005 Jan; 44(2):609-16. PubMed ID: 15641786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of Complex Biomolecular Structures: van der Waals, Hydrogen Bond Cooperativity, and Nuclear Quantum Effects.
    Rossi M; Fang W; Michaelides A
    J Phys Chem Lett; 2015 Nov; 6(21):4233-8. PubMed ID: 26722963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tryptophan side chain electrostatic interactions determine edge-to-face vs parallel-displaced tryptophan side chain geometries in the designed beta-hairpin "trpzip2".
    Guvench O; Brooks CL
    J Am Chem Soc; 2005 Apr; 127(13):4668-74. PubMed ID: 15796532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the role of intra- and intermolecular interactions in the formation of single- and double-helical structures of aromatic oligoamides: a computational study.
    Dong H; Hua S; Li S
    J Phys Chem A; 2009 Feb; 113(7):1335-42. PubMed ID: 19170580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of branched beta-carbon dehydro-residues on peptide conformations: syntheses, crystal structures and molecular conformations of two tetrapeptides: (a) N-(benzyloxycarbonyl)-DeltaVal-Leu-DeltaPhe-Leu-OCH3 and (b) N-(benzyloxycarbonyl)-DeltaIle-Ala-DeltaPhe-Ala-OCH3.
    Goel VK; Somvanshi RK; Dey S; Singh TP
    J Pept Res; 2005 Aug; 66(2):68-74. PubMed ID: 16000120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free energy determinants of secondary structure formation: I. alpha-Helices.
    Yang AS; Honig B
    J Mol Biol; 1995 Sep; 252(3):351-65. PubMed ID: 7563056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. H-bonding cooperativity and energetics of alpha-helix formation of five 17-amino acid peptides.
    Wieczorek R; Dannenberg JJ
    J Am Chem Soc; 2003 Jul; 125(27):8124-9. PubMed ID: 12837081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.