These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 218593)

  • 1. Transport ATPase--the different modes of inhibition of the enzyme by various mercury compounds.
    Henderson GR; Huang WH; Askari A
    Biochem Pharmacol; 1979; 28(3):429-33. PubMed ID: 218593
    [No Abstract]   [Full Text] [Related]  

  • 2. Inhibitory characteristics of the mycotoxin penicillic acid on (Na+-K+)-activated adenosine triphosphatase.
    Phillips TD; Chan PK; Hayes AW
    Biochem Pharmacol; 1980 Jan; 29(1):19-26. PubMed ID: 6244827
    [No Abstract]   [Full Text] [Related]  

  • 3. Sodium, potassium-requiring adenosinetriphosphatase activity. II. Mechanism of inhibition by sulphydryl reagents.
    Rendi R
    Biochim Biophys Acta; 1965 Jun; 99(3):564-6. PubMed ID: 4221036
    [No Abstract]   [Full Text] [Related]  

  • 4. Relationship between inhibition of renal Na+ plus K+-ATPase and natriuresis.
    Nechay BR
    Ann N Y Acad Sci; 1974; 242(0):501-18. PubMed ID: 4279602
    [No Abstract]   [Full Text] [Related]  

  • 5. Differences between CTP and ATP as substrates for the (Na + K)-ATPase.
    Robinson JD
    Arch Biochem Biophys; 1982 Feb; 213(2):650-7. PubMed ID: 6280617
    [No Abstract]   [Full Text] [Related]  

  • 6. Exchange between inorganic phosphate and adenosine triphosphate in (Na+,K+)-ATPase.
    Gonçalves de Moraes VL; De Meis L
    Biochim Biophys Acta; 1982 May; 688(1):131-7. PubMed ID: 6284227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible inhibition of sodium and potassium-dependent adenosine triphosphatase by the pyridine derivative, AU-1421 during turnover cycle.
    Takada J
    Biochem Pharmacol; 1990 Oct; 40(7):1527-31. PubMed ID: 2171532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the reaction catalyzed by transport (Na, K) adenosine triphosphatase-II. In vitro and in vivo effects of phenoxybenzamine.
    Hexum TD
    Biochem Pharmacol; 1978; 27(17):2109-14. PubMed ID: 31879
    [No Abstract]   [Full Text] [Related]  

  • 9. The sodium, potassium-pump.
    Skou JC
    Scand J Clin Lab Invest Suppl; 1986; 180():11-23. PubMed ID: 3012760
    [No Abstract]   [Full Text] [Related]  

  • 10. Fluorescence quenching of IAF-Na+/K(+)-ATPase via energy transfer to TNP-labeled nucleotide.
    Hellen EH; Pratap PR
    Ann N Y Acad Sci; 1997 Nov; 834():439-41. PubMed ID: 9405839
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of alloxan-diabetes on the sodium-potassium adenosine triphosphatase enzyme system in dog hearts.
    Onji T; Liu MS
    Biochem Biophys Res Commun; 1980 Sep; 96(2):799-804. PubMed ID: 6252894
    [No Abstract]   [Full Text] [Related]  

  • 12. Modification of the E1ATP binding site of Na+/K(+)-ATPase by the chromium complex of adenosine 5'-[beta,gamma-methylene]triphosphate blocks the overall reaction but not the partial activities of the E2 conformation.
    Hamer E; Schoner W
    Eur J Biochem; 1993 Apr; 213(2):743-8. PubMed ID: 8386635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleotide binding to Na,K-ATPase. Effect of ionic strength and charge.
    Nørby JG; Esmann M
    Ann N Y Acad Sci; 1997 Nov; 834():410-1. PubMed ID: 9405835
    [No Abstract]   [Full Text] [Related]  

  • 14. N-acetylimidazole inactivates renal Na,K-ATPase by disrupting ATP binding to the catalytic site.
    Argüello JM; Kaplan JH
    Biochemistry; 1990 Jun; 29(24):5775-82. PubMed ID: 2166561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vanadate inhibition of Na+K+. ATPase and K+-dependent p-nitrophenylphosphatase: a kinetic analysis.
    Blázovics A; Vodnyánszky L; Somogyi J; Horváth I
    Acta Biochim Biophys Acad Sci Hung; 1983; 18(3-4):199-209. PubMed ID: 6331047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic mercurials and net movements of potassium in rat kidney slices.
    Bowman FJ; Landon EJ
    Am J Physiol; 1967 Nov; 213(5):1209-17. PubMed ID: 4228306
    [No Abstract]   [Full Text] [Related]  

  • 17. Association of biochemical functions with specific subunit arrangements in purified Na, K-ATPase.
    Cavieres JD
    Prog Clin Biol Res; 1988; 268A():175-80. PubMed ID: 2843858
    [No Abstract]   [Full Text] [Related]  

  • 18. Blocking of Na+/K+ transport by the MgPO4 complex analogue Co(NH3)4PO4 leaves the Na+/Na(+)-exchange reaction of the sodium pump unaltered and shifts its high-affinity ATP-binding site to a Na(+)-like form.
    Buxbaum E; Schoner W
    Eur J Biochem; 1990 Oct; 193(2):355-60. PubMed ID: 1699757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of thallium ions on the relation between ATP hydrolysis and 180-exchange in the Na+, K+-ATPase system].
    Skvortsevich EG
    Nerv Sist; 1982; 23():95-8. PubMed ID: 6322029
    [No Abstract]   [Full Text] [Related]  

  • 20. Inhibitory characteristics of cadmium, lead, and mercury in human sodium and potassium dependent adenosinetriphosphatase preparations.
    Nechay BR; Saunders JP
    J Environ Pathol Toxicol; 1978; 2(2):283-90. PubMed ID: 216761
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.