These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 2185945)
1. Sensitivity of the retinal circular dichroism of bacteriorhodopsin to the mutagenetic single substitution of amino acids: tyrosine. Du JJ; el-Sayed MA; Stern LJ; Mogi T; Khorana HG FEBS Lett; 1990 Mar; 262(2):155-8. PubMed ID: 2185945 [TBL] [Abstract][Full Text] [Related]
3. Circular dichroism of heterochromophoric and partially regenerated purple membrane: search for exciton coupling. Karnaukhova E; Vasileiou C; Wang A; Berova N; Nakanishi K; Borhan B Chirality; 2006 Feb; 18(2):72-83. PubMed ID: 16385624 [TBL] [Abstract][Full Text] [Related]
4. Vibrational spectroscopy of bacteriorhodopsin mutants: I. Tyrosine-185 protonates and deprotonates during the photocycle. Braiman MS; Mogi T; Stern LJ; Hackett NR; Chao BH; Khorana HG; Rothschild KJ Proteins; 1988; 3(4):219-29. PubMed ID: 2843849 [TBL] [Abstract][Full Text] [Related]
5. Circular dichroism of halorhodopsin: comparison with bacteriorhodopsin and sensory rhodopsin I. Hasselbacher CA; Spudich JL; Dewey TG Biochemistry; 1988 Apr; 27(7):2540-6. PubMed ID: 3382638 [TBL] [Abstract][Full Text] [Related]
6. Effects of amino acid substitutions in the F helix of bacteriorhodopsin. Low temperature ultraviolet/visible difference spectroscopy. Ahl PL; Stern LJ; Düring D; Mogi T; Khorana HG; Rothschild KJ J Biol Chem; 1988 Sep; 263(27):13594-601. PubMed ID: 3047127 [TBL] [Abstract][Full Text] [Related]
7. The exciton origin of the visible circular dichroism spectrum of bacteriorhodopsin. Pescitelli G; Woody RW J Phys Chem B; 2012 Jun; 116(23):6751-63. PubMed ID: 22329810 [TBL] [Abstract][Full Text] [Related]
8. Bacteriorhodopsin mutants containing single tyrosine to phenylalanine substitutions are all active in proton translocation. Mogi T; Stern LJ; Hackett NR; Khorana HG Proc Natl Acad Sci U S A; 1987 Aug; 84(16):5595-9. PubMed ID: 3039495 [TBL] [Abstract][Full Text] [Related]
9. The chromophore induces a correct folding of the polypeptide chain of bacteriorhodopsin. Kollbach G; Steinmüller S; Berndsen T; Buss V; Gärtner W Biochemistry; 1998 Jun; 37(22):8227-32. PubMed ID: 9609719 [TBL] [Abstract][Full Text] [Related]
10. Effects of genetic replacements of charged and H-bonding residues in the retinal pocket on Ca2+ binding to deionized bacteriorhodopsin. Zhang YN; el-Sayed MA; Bonet ML; Lanyi JK; Chang M; Ni B; Needleman R Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1445-9. PubMed ID: 8434004 [TBL] [Abstract][Full Text] [Related]
11. Heterogeneity effects in the binding of all-trans retinal to bacterio-opsin. Friedman N; Ottolenghi M; Sheves M Biochemistry; 2003 Sep; 42(38):11281-8. PubMed ID: 14503878 [TBL] [Abstract][Full Text] [Related]
13. Effect of genetic modification of tyrosine-185 on the proton pump and the blue-to-purple transition in bacteriorhodopsin. Jang DJ; el-Sayed MA; Stern LJ; Mogi T; Khorana HG Proc Natl Acad Sci U S A; 1990 Jun; 87(11):4103-7. PubMed ID: 2349220 [TBL] [Abstract][Full Text] [Related]
14. Photoselection and circular dichroism in the purple membrane. Godfrey RE Biophys J; 1982 Apr; 38(1):1-6. PubMed ID: 7074194 [TBL] [Abstract][Full Text] [Related]
15. Inhomogeneous stability of bacteriorhodopsin in purple membrane against photobleaching at high temperature. Yokoyama Y; Sonoyama M; Mitaku S Proteins; 2004 Feb; 54(3):442-54. PubMed ID: 14747993 [TBL] [Abstract][Full Text] [Related]
16. Intramembrane substitutions in helix D of bacteriorhodopsin disrupt the purple membrane. Krebs MP; Li W; Halambeck TP J Mol Biol; 1997 Mar; 267(1):172-83. PubMed ID: 9096216 [TBL] [Abstract][Full Text] [Related]
17. Trimeric mutant bacteriorhodopsin, D85N, shows a monophasic CD spectrum. Kataoka M; Mihara K; Kamikubo H; Needleman R; Lanyi JK; Tokunaga F FEBS Lett; 1993 Oct; 333(1-2):111-3. PubMed ID: 8224146 [TBL] [Abstract][Full Text] [Related]
18. Uv-visible spectroscopy of bacteriorhodopsin mutants: substitution of Arg-82, Asp-85, Tyr-185, and Asp-212 results in abnormal light-dark adaptation. Duñach M; Marti T; Khorana HG; Rothschild KJ Proc Natl Acad Sci U S A; 1990 Dec; 87(24):9873-7. PubMed ID: 2263638 [TBL] [Abstract][Full Text] [Related]
19. Circular dichroism study of bacteriorhodopsin-lipid interaction. Nishiya T; Tabushi I; Maeda A Biochem Biophys Res Commun; 1987 Apr; 144(2):836-40. PubMed ID: 3579943 [TBL] [Abstract][Full Text] [Related]
20. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin. Kim JM; Booth PJ; Allen SJ; Khorana HG J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]