BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 21859806)

  • 1. Evolution of the Max and Mlx networks in animals.
    McFerrin LG; Atchley WR
    Genome Biol Evol; 2011; 3():915-37. PubMed ID: 21859806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The MNT transcription factor autoregulates its expression and supports proliferation in MYC-associated factor X (MAX)-deficient cells.
    Lafita-Navarro MC; Liaño-Pons J; Quintanilla A; Varela I; Blanco R; Ourique F; Bretones G; Aresti J; Molina E; Carroll P; Hurlin P; Romero OA; Sanchez-Céspedes M; Eisenman RN; Delgado MD; León J
    J Biol Chem; 2020 Feb; 295(7):2001-2017. PubMed ID: 31919096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Mlx network: evidence for a parallel Max-like transcriptional network that regulates energy metabolism.
    Billin AN; Ayer DE
    Curr Top Microbiol Immunol; 2006; 302():255-78. PubMed ID: 16620032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MondoA, a novel basic helix-loop-helix-leucine zipper transcriptional activator that constitutes a positive branch of a max-like network.
    Billin AN; Eilers AL; Coulter KL; Logan JS; Ayer DE
    Mol Cell Biol; 2000 Dec; 20(23):8845-54. PubMed ID: 11073985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional interactions among members of the MAX and MLX transcriptional network during oncogenesis.
    Diolaiti D; McFerrin L; Carroll PA; Eisenman RN
    Biochim Biophys Acta; 2015 May; 1849(5):484-500. PubMed ID: 24857747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The crystal structure of an intact human Max-DNA complex: new insights into mechanisms of transcriptional control.
    Brownlie P; Ceska T; Lamers M; Romier C; Stier G; Teo H; Suck D
    Structure; 1997 Apr; 5(4):509-20. PubMed ID: 9115440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mlx, a novel Max-like BHLHZip protein that interacts with the Max network of transcription factors.
    Billin AN; Eilers AL; Queva C; Ayer DE
    J Biol Chem; 1999 Dec; 274(51):36344-50. PubMed ID: 10593926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myc/Max/Mad in invertebrates: the evolution of the Max network.
    Gallant P
    Curr Top Microbiol Immunol; 2006; 302():235-53. PubMed ID: 16620031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A critical role for the loop region of the basic helix-loop-helix/leucine zipper protein Mlx in DNA binding and glucose-regulated transcription.
    Ma L; Sham YY; Walters KJ; Towle HC
    Nucleic Acids Res; 2007; 35(1):35-44. PubMed ID: 17148476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mga, a dual-specificity transcription factor that interacts with Max and contains a T-domain DNA-binding motif.
    Hurlin PJ; Steingrìmsson E; Copeland NG; Jenkins NA; Eisenman RN
    EMBO J; 1999 Dec; 18(24):7019-28. PubMed ID: 10601024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mondo/ChREBP-Mlx-regulated transcriptional network is essential for dietary sugar tolerance in Drosophila.
    Havula E; Teesalu M; Hyötyläinen T; Seppälä H; Hasygar K; Auvinen P; Orešič M; Sandmann T; Hietakangas V
    PLoS Genet; 2013 Apr; 9(4):e1003438. PubMed ID: 23593032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One billion years of bZIP transcription factor evolution: conservation and change in dimerization and DNA-binding site specificity.
    Amoutzias GD; Veron AS; Weiner J; Robinson-Rechavi M; Bornberg-Bauer E; Oliver SG; Robertson DL
    Mol Biol Evol; 2007 Mar; 24(3):827-35. PubMed ID: 17194801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Intrinsically Disordered Loop in the USF1 bHLHZ Domain Modulates Its DNA-Binding Sequence Specificity in Hereditary Asthma.
    Popa SC; Shin JA
    J Phys Chem B; 2019 Nov; 123(46):9862-9871. PubMed ID: 31670516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordinated Cross-Talk Between the Myc and Mlx Networks in Liver Regeneration and Neoplasia.
    Wang H; Lu J; Alencastro F; Roberts A; Fiedor J; Carroll P; Eisenman RN; Ranganathan S; Torbenson M; Duncan AW; Prochownik EV
    Cell Mol Gastroenterol Hepatol; 2022; 13(6):1785-1804. PubMed ID: 35259493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning and expression of chicken carbohydrate response element binding protein and Max-like protein X gene homologues.
    Proszkowiec-Weglarz M; Humphrey BD; Richards MP
    Mol Cell Biochem; 2008 May; 312(1-2):167-84. PubMed ID: 18373069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The basic region/helix-loop-helix/leucine zipper domain of Myc proto-oncoproteins: function and regulation.
    Lüscher B; Larsson LG
    Oncogene; 1999 May; 18(19):2955-66. PubMed ID: 10378692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and properties of a Myc derivative that efficiently homodimerizes.
    Soucek L; Helmer-Citterich M; Sacco A; Jucker R; Cesareni G; Nasi S
    Oncogene; 1998 Nov; 17(19):2463-72. PubMed ID: 9824157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural aspects of interactions within the Myc/Max/Mad network.
    Nair SK; Burley SK
    Curr Top Microbiol Immunol; 2006; 302():123-43. PubMed ID: 16620027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Mad side of the Max network: antagonizing the function of Myc and more.
    Rottmann S; Lüscher B
    Curr Top Microbiol Immunol; 2006; 302():63-122. PubMed ID: 16620026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The MYC transcription factor network: balancing metabolism, proliferation and oncogenesis.
    Carroll PA; Freie BW; Mathsyaraja H; Eisenman RN
    Front Med; 2018 Aug; 12(4):412-425. PubMed ID: 30054853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.