These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 21860065)
1. SimBioNeT: a simulator of biological network topology. Di Camillo B; Falda M; Toffolo G; Cobelli C IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):592-600. PubMed ID: 21860065 [TBL] [Abstract][Full Text] [Related]
2. A gene network simulator to assess reverse engineering algorithms. Di Camillo B; Toffolo G; Cobelli C Ann N Y Acad Sci; 2009 Mar; 1158():125-42. PubMed ID: 19348638 [TBL] [Abstract][Full Text] [Related]
3. Structural comparison of metabolic networks in selected single cell organisms. Zhu D; Qin ZS BMC Bioinformatics; 2005 Jan; 6():8. PubMed ID: 15649332 [TBL] [Abstract][Full Text] [Related]
4. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures. Kentzoglanakis K; Poole M IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):358-71. PubMed ID: 21576756 [TBL] [Abstract][Full Text] [Related]
5. Using Sub-Network Combinations to Scale Up an Enumeration Method for Determining the Network Structures of Biological Functions. Xi JY; Ouyang Q PLoS One; 2016; 11(12):e0168214. PubMed ID: 27992476 [TBL] [Abstract][Full Text] [Related]
6. Dynamical and topological robustness of the mammalian cell cycle network: a reverse engineering approach. Ruz GA; Goles E; Montalva M; Fogel GB Biosystems; 2014 Jan; 115():23-32. PubMed ID: 24212100 [TBL] [Abstract][Full Text] [Related]
7. Visualization and analysis of the complexome network of Saccharomyces cerevisiae. Li SS; Xu K; Wilkins MR J Proteome Res; 2011 Oct; 10(10):4744-56. PubMed ID: 21842913 [TBL] [Abstract][Full Text] [Related]
8. Generating realistic in silico gene networks for performance assessment of reverse engineering methods. Marbach D; Schaffter T; Mattiussi C; Floreano D J Comput Biol; 2009 Feb; 16(2):229-39. PubMed ID: 19183003 [TBL] [Abstract][Full Text] [Related]
10. Identification of functional modules using network topology and high-throughput data. Ulitsky I; Shamir R BMC Syst Biol; 2007 Jan; 1():8. PubMed ID: 17408515 [TBL] [Abstract][Full Text] [Related]
11. Using the topology of metabolic networks to predict viability of mutant strains. Wunderlich Z; Mirny LA Biophys J; 2006 Sep; 91(6):2304-11. PubMed ID: 16782788 [TBL] [Abstract][Full Text] [Related]
12. PREMER: A Tool to Infer Biological Networks. Villaverde AF; Becker K; Banga JR IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(4):1193-1202. PubMed ID: 28981423 [TBL] [Abstract][Full Text] [Related]
13. Bridge and brick network motifs: identifying significant building blocks from complex biological systems. Huang CY; Cheng CY; Sun CT Artif Intell Med; 2007 Oct; 41(2):117-27. PubMed ID: 17825540 [TBL] [Abstract][Full Text] [Related]
14. Are scale-free networks robust to measurement errors? Lin N; Zhao H BMC Bioinformatics; 2005 May; 6():119. PubMed ID: 15904487 [TBL] [Abstract][Full Text] [Related]
15. Node fingerprinting: an efficient heuristic for aligning biological networks. Radu A; Charleston M J Comput Biol; 2014 Oct; 21(10):760-70. PubMed ID: 25148127 [TBL] [Abstract][Full Text] [Related]