These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 21860461)

  • 1. Control and induction of surface-confined homochiral porous molecular networks.
    Tahara K; Yamaga H; Ghijsens E; Inukai K; Adisoejoso J; Blunt MO; De Feyter S; Tobe Y
    Nat Chem; 2011 Aug; 3(9):714-9. PubMed ID: 21860461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional chirality: intelligent design.
    Foroughi LM; Matzger AJ
    Nat Chem; 2011 Aug; 3(9):663-5. PubMed ID: 21860448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Globally homochiral assembly of two-dimensional molecular networks triggered by co-absorbers.
    Chen T; Yang WH; Wang D; Wan LJ
    Nat Commun; 2013; 4():1389. PubMed ID: 23340429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the complexity of supramolecular interactions for patterning at the liquid-solid interface.
    Mali KS; Adisoejoso J; Ghijsens E; De Cat I; De Feyter S
    Acc Chem Res; 2012 Aug; 45(8):1309-20. PubMed ID: 22612471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-molecule insights into surface-mediated homochirality in hierarchical peptide assembly.
    Chen Y; Deng K; Lei S; Yang R; Li T; Gu Y; Yang Y; Qiu X; Wang C
    Nat Commun; 2018 Jul; 9(1):2711. PubMed ID: 30006627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remote chiral communication in coadsorber-induced enantioselective 2D supramolecular assembly at a liquid/solid interface.
    Chen T; Li SY; Wang D; Yao M; Wan LJ
    Angew Chem Int Ed Engl; 2015 Mar; 54(14):4309-14. PubMed ID: 25677120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversing the Handedness of Self-Assembled Porous Molecular Networks through the Number of Identical Chiral Centres.
    Tahara K; Noguchi A; Nakayama R; Ghijsens E; De Feyter S; Tobe Y
    Angew Chem Int Ed Engl; 2019 Jun; 58(23):7733-7738. PubMed ID: 30941830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chiral hierarchical molecular nanostructures on two-dimensional surface by controllable trinary self-assembly.
    Liu J; Chen T; Deng X; Wang D; Pei J; Wan LJ
    J Am Chem Soc; 2011 Dec; 133(51):21010-5. PubMed ID: 22106949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent-induced homochirality in surface-confined low-density nanoporous molecular networks.
    Destoop I; Ghijsens E; Katayama K; Tahara K; Mali KS; Tobe Y; De Feyter S
    J Am Chem Soc; 2012 Dec; 134(48):19568-71. PubMed ID: 23167496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mirror image DNA nanostructures for chiral supramolecular assemblies.
    Lin C; Ke Y; Li Z; Wang JH; Liu Y; Yan H
    Nano Lett; 2009 Jan; 9(1):433-6. PubMed ID: 19063615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional porous molecular networks of dehydrobenzo[12]annulene derivatives via alkyl chain interdigitation.
    Tahara K; Furukawa S; Uji-i H; Uchino T; Ichikawa T; Zhang J; Mamdouh W; Sonoda M; De Schryver FC; De Feyter S; Tobe Y
    J Am Chem Soc; 2006 Dec; 128(51):16613-25. PubMed ID: 17177410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orbital specific chirality and homochiral self-assembly of achiral molecules induced by charge transfer and spontaneous symmetry breaking.
    Mugarza A; Lorente N; Ordejón P; Krull C; Stepanow S; Bocquet ML; Fraxedas J; Ceballos G; Gambardella P
    Phys Rev Lett; 2010 Sep; 105(11):115702. PubMed ID: 20867587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular self-assembly from building blocks synthesized on a surface in ultrahigh vacuum: kinetic control and topo-chemical reactions.
    Weigelt S; Bombis C; Busse C; Knudsen MM; Gothelf KV; Laegsgaard E; Besenbacher F; Linderoth TR
    ACS Nano; 2008 Apr; 2(4):651-60. PubMed ID: 19206595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling chiral organization of molecular rods on Au(111) by molecular design.
    Knudsen MM; Kalashnyk N; Masini F; Cramer JR; Lægsgaard E; Besenbacher F; Linderoth TR; Gothelf KV
    J Am Chem Soc; 2011 Apr; 133(13):4896-905. PubMed ID: 21401127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Function follows form: exploring two-dimensional supramolecular assembly at surfaces.
    Tait SL
    ACS Nano; 2008 Apr; 2(4):617-21. PubMed ID: 19206590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chiral induction and amplification in supramolecular systems at the liquid-solid interface.
    Xu H; Ghijsens E; George SJ; Wolffs M; Tomović Ž; Schenning AP; De Feyter S
    Chemphyschem; 2013 Jun; 14(8):1583-90. PubMed ID: 23564754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programming supramolecular assembly and chirality in two-dimensional dicarboxylate networks on a Cu(100) surface.
    Stepanow S; Lin N; Vidal F; Landa A; Ruben M; Barth JV; Kern K
    Nano Lett; 2005 May; 5(5):901-4. PubMed ID: 15884891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and properties of molecular rods. 2. Zig-zag rods.
    Schwab PF; Smith JR; Michl J
    Chem Rev; 2005 Apr; 105(4):1197-279. PubMed ID: 15826013
    [No Abstract]   [Full Text] [Related]  

  • 19. Chiral expression from molecular assemblies at metal surfaces: insights from surface science techniques.
    Raval R
    Chem Soc Rev; 2009 Mar; 38(3):707-21. PubMed ID: 19322464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supramolecular chirality in self-assembled soft materials: regulation of chiral nanostructures and chiral functions.
    Zhang L; Qin L; Wang X; Cao H; Liu M
    Adv Mater; 2014 Oct; 26(40):6959-64. PubMed ID: 24687217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.