These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 21860779)

  • 1. Genetic mutations and mitochondrial toxins shed new light on the pathogenesis of Parkinson's disease.
    Sato S; Hattori N
    Parkinsons Dis; 2011; 2011():979231. PubMed ID: 21860779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Molecular mechanism of early-onset familial PD].
    Sato S
    Rinsho Shinkeigaku; 2012; 52(11):1327-8. PubMed ID: 23196607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunocytochemical Monitoring of PINK1/Parkin-Mediated Mitophagy in Cultured Cells.
    Fujimaki M; Saiki S; Sasazawa Y; Ishikawa KI; Imamichi Y; Sumiyoshi K; Hattori N
    Methods Mol Biol; 2018; 1759():19-27. PubMed ID: 28361483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease.
    Büeler H
    Exp Neurol; 2009 Aug; 218(2):235-46. PubMed ID: 19303005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Etiology and pathogenesis of Parkinson's disease: from mitochondrial dysfunctions to familial Parkinson's disease].
    Hattori N
    Rinsho Shinkeigaku; 2004; 44(4-5):241-62. PubMed ID: 15287506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin.
    Clark IE; Dodson MW; Jiang C; Cao JH; Huh JR; Seol JH; Yoo SJ; Hay BA; Guo M
    Nature; 2006 Jun; 441(7097):1162-6. PubMed ID: 16672981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PGAM5 regulates PINK1/Parkin-mediated mitophagy via DRP1 in CCCP-induced mitochondrial dysfunction.
    Park YS; Choi SE; Koh HC
    Toxicol Lett; 2018 Mar; 284():120-128. PubMed ID: 29241732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the Impact of
    Zilocchi M; Colugnat I; Lualdi M; Meduri M; Marini F; Corasolla Carregari V; Moutaoufik MT; Phanse S; Pieroni L; Babu M; Garavaglia B; Fasano M; Alberio T
    Front Cell Dev Biol; 2020; 8():423. PubMed ID: 32596240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human telomerase reverse transcriptase positively regulates mitophagy by inhibiting the processing and cytoplasmic release of mitochondrial PINK1.
    Shin WH; Chung KC
    Cell Death Dis; 2020 Jun; 11(6):425. PubMed ID: 32513926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial dysfunction in Parkinson's disease.
    Hu Q; Wang G
    Transl Neurodegener; 2016; 5():14. PubMed ID: 27453777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drosophila as a model to study mitochondrial dysfunction in Parkinson's disease.
    Guo M
    Cold Spring Harb Perspect Med; 2012 Nov; 2(11):. PubMed ID: 23024178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-degron-mediated degradation and regulation of mitochondrial PINK1 kinase.
    Eldeeb MA; Ragheb MA
    Curr Genet; 2020 Aug; 66(4):693-701. PubMed ID: 32157382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chicken DT40 cell line lacking DJ-1, the gene responsible for familial Parkinson's disease, displays mitochondrial dysfunction.
    Minakawa EN; Yamakado H; Tanaka A; Uemura K; Takeda S; Takahashi R
    Neurosci Res; 2013 Dec; 77(4):228-33. PubMed ID: 24064392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial contribution to Parkinson's disease pathogenesis.
    Schapira AH; Gegg M
    Parkinsons Dis; 2011; 2011():159160. PubMed ID: 21687805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurochemistry changes associated with mutations in familial Parkinson's disease.
    Siddique MM; Tan EK
    Curr Med Chem; 2010; 17(35):4378-91. PubMed ID: 20939808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LRRK2 impairs PINK1/Parkin-dependent mitophagy via its kinase activity: pathologic insights into Parkinson's disease.
    Bonello F; Hassoun SM; Mouton-Liger F; Shin YS; Muscat A; Tesson C; Lesage S; Beart PM; Brice A; Krupp J; Corvol JC; Corti O
    Hum Mol Genet; 2019 May; 28(10):1645-1660. PubMed ID: 30629163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nix restores mitophagy and mitochondrial function to protect against PINK1/Parkin-related Parkinson's disease.
    Koentjoro B; Park JS; Sue CM
    Sci Rep; 2017 Mar; 7():44373. PubMed ID: 28281653
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Wauters F; Cornelissen T; Imberechts D; Martin S; Koentjoro B; Sue C; Vangheluwe P; Vandenberghe W
    Autophagy; 2020 Feb; 16(2):203-222. PubMed ID: 30945962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell death pathways in Parkinson's disease: role of mitochondria.
    Yao Z; Wood NW
    Antioxid Redox Signal; 2009 Sep; 11(9):2135-49. PubMed ID: 19422283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of glucose metabolism and ATP in maintaining PINK1 levels during Parkin-mediated mitochondrial damage responses.
    Lee S; Zhang C; Liu X
    J Biol Chem; 2015 Jan; 290(2):904-17. PubMed ID: 25404737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.