BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 21860848)

  • 1. Using a TEMPO-based fluorescent probe for monitoring oxidative stress in living cells.
    Liu Y; Zhu M; Xu J; Zhang H; Tian M
    Analyst; 2011 Oct; 136(20):4316-20. PubMed ID: 21860848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2',7'-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937.
    Rastogi RP; Singh SP; Häder DP; Sinha RP
    Biochem Biophys Res Commun; 2010 Jul; 397(3):603-7. PubMed ID: 20570649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active oxygen chemistry within the liposomal bilayer. Part IV: Locating 2',7'-dichlorofluorescein (DCF), 2',7'-dichlorodihydrofluorescein (DCFH) and 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) in the lipid bilayer.
    Afri M; Frimer AA; Cohen Y
    Chem Phys Lipids; 2004 Aug; 131(1):123-33. PubMed ID: 15210370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring reactive oxygen species formation and localisation in living cells by use of the fluorescent probe CM-H(2)DCFDA and confocal laser microscopy.
    Kristiansen KA; Jensen PE; Møller IM; Schulz A
    Physiol Plant; 2009 Aug; 136(4):369-83. PubMed ID: 19493304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implications of using the fluorescent probes, dihydrorhodamine 123 and 2',7'-dichlorodihydrofluorescein diacetate, for the detection of UVA-induced reactive oxygen species.
    Boulton S; Anderson A; Swalwell H; Henderson JR; Manning P; Birch-Machin MA
    Free Radic Res; 2011 Feb; 45(2):139-46. PubMed ID: 20942573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of the radical intermediate obtained on oxidation of 2',7'-dichlorodihydrofluorescein, a probe for oxidative stress.
    Wrona M; Wardman P
    Free Radic Biol Med; 2006 Aug; 41(4):657-67. PubMed ID: 16863999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A modified fixed staining method for the simultaneous measurement of reactive oxygen species and oxidative responses.
    Shen WJ; Hsieh CY; Chen CL; Yang KC; Ma CT; Choi PC; Lin CF
    Biochem Biophys Res Commun; 2013 Jan; 430(1):442-7. PubMed ID: 23178299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting reactive oxygen species in primary hepatocytes treated with nanoparticles.
    Zolnik B; Potter TM; Stern ST
    Methods Mol Biol; 2011; 697():173-9. PubMed ID: 21116966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An in vitro procedure for evaluation of early stage oxidative stress in an established fish cell line applied to investigation of PHAH and pesticide toxicity.
    Ruiz-Leal M; George S
    Mar Environ Res; 2004; 58(2-5):631-5. PubMed ID: 15178091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and application of a near-infrared fluorescence probe for oxidative stress based on differential reactivity of linked cyanine dyes.
    Oushiki D; Kojima H; Terai T; Arita M; Hanaoka K; Urano Y; Nagano T
    J Am Chem Soc; 2010 Mar; 132(8):2795-801. PubMed ID: 20136129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A TEMPO-conjugated fluorescent probe for monitoring mitochondrial redox reactions.
    Hirosawa S; Arai S; Takeoka S
    Chem Commun (Camb); 2012 May; 48(40):4845-7. PubMed ID: 22506265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2',7'-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: Forty years of application and controversy.
    Chen X; Zhong Z; Xu Z; Chen L; Wang Y
    Free Radic Res; 2010 Jun; 44(6):587-604. PubMed ID: 20370560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The roles of thiol-derived radicals in the use of 2',7'-dichlorodihydrofluorescein as a probe for oxidative stress.
    Wrona M; Patel KB; Wardman P
    Free Radic Biol Med; 2008 Jan; 44(1):56-62. PubMed ID: 18045547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Which are you watching, an individual reactive oxygen species or total oxidative stress?
    Maeda H
    Ann N Y Acad Sci; 2008; 1130():149-56. PubMed ID: 18596343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concerns in the application of fluorescent probes DCDHF-DA, DHR 123 and DHE to measure reactive oxygen species in vitro.
    Yazdani M
    Toxicol In Vitro; 2015 Dec; 30(1 Pt B):578-82. PubMed ID: 26318276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects.
    Wardman P
    Free Radic Biol Med; 2007 Oct; 43(7):995-1022. PubMed ID: 17761297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular imaging of lipid peroxyl radicals in living cells with a BODIPY-alpha-tocopherol adduct.
    Khatchadourian A; Krumova K; Boridy S; Ngo AT; Maysinger D; Cosa G
    Biochemistry; 2009 Jun; 48(24):5658-68. PubMed ID: 19358614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay: a quantitative method for oxidative stress assessment of nanoparticle-treated cells.
    Aranda A; Sequedo L; Tolosa L; Quintas G; Burello E; Castell JV; Gombau L
    Toxicol In Vitro; 2013 Mar; 27(2):954-63. PubMed ID: 23357416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox-Responsive Fluorescent Probes with Different Design Strategies.
    Lou Z; Li P; Han K
    Acc Chem Res; 2015 May; 48(5):1358-68. PubMed ID: 25901910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cadmium-induced mitochondrial membrane-potential dissipation does not necessarily require cytosolic oxidative stress: studies using rhodamine-123 fluorescence unquenching.
    Bolduc JS; Denizeau F; Jumarie C
    Toxicol Sci; 2004 Feb; 77(2):299-306. PubMed ID: 14600273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.