BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 21861087)

  • 1. Development of surgical techniques for implantation of a wireless intraocular epiretinal retina implant in Göttingen minipigs.
    Laube T; Brockmann C; Roessler G; Walter P; Krueger C; Goertz M; Klauke S; Bornfeld N
    Graefes Arch Clin Exp Ophthalmol; 2012 Jan; 250(1):51-9. PubMed ID: 21861087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implantation and explantation of a wireless epiretinal retina implant device: observations during the EPIRET3 prospective clinical trial.
    Roessler G; Laube T; Brockmann C; Kirschkamp T; Mazinani B; Goertz M; Koch C; Krisch I; Sellhaus B; Trieu HK; Weis J; Bornfeld N; Röthgen H; Messner A; Mokwa W; Walter P
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):3003-8. PubMed ID: 19420330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs.
    Majji AB; Humayun MS; Weiland JD; Suzuki S; D'Anna SA; de Juan E
    Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2073-81. PubMed ID: 10440263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surgical Results and Microscopic Analysis of the Tissue Reaction following Implantation and Explantation of an Intraocular Implant for Epiretinal Stimulation in Minipigs.
    Menzel-Severing J; Sellhaus B; Laube T; Brockmann C; Bornfeld N; Walter P; Roessler G
    Ophthalmic Res; 2011 Oct; 46(4):192-8. PubMed ID: 21464576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits.
    Walter P; Szurman P; Vobig M; Berk H; Lüdtke-Handjery HC; Richter H; Mittermayer C; Heimann K; Sellhaus B
    Retina; 1999; 19(6):546-52. PubMed ID: 10606457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental implantation of epiretinal retina implants (EPI-RET) with an IOL-type receiver unit.
    Gerding H; Benner FP; Taneri S
    J Neural Eng; 2007 Mar; 4(1):S38-49. PubMed ID: 17325415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the feasibility of a subretinal visual prosthesis: data from Yucatan micropig and rabbit.
    Schwahn HN; Gekeler F; Kohler K; Kobuch K; Sachs HG; Schulmeyer F; Jakob W; Gabel VP; Zrenner E
    Graefes Arch Clin Exp Ophthalmol; 2001 Dec; 239(12):961-7. PubMed ID: 11820703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo assessment of subretinally implanted microphotodiode arrays in cats by optical coherence tomography and fluorescein angiography.
    Völker M; Shinoda K; Sachs H; Gmeiner H; Schwarz T; Kohler K; Inhoffen W; Bartz-Schmidt KU; Zrenner E; Gekeler F
    Graefes Arch Clin Exp Ophthalmol; 2004 Sep; 242(9):792-9. PubMed ID: 15179515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implantation of stimulation electrodes in the subretinal space to demonstrate cortical responses in Yucatan minipig in the course of visual prosthesis development.
    Sachs HG; Gekeler F; Schwahn H; Jakob W; Köhler M; Schulmeyer F; Marienhagen J; Brunner U; Framme C
    Eur J Ophthalmol; 2005; 15(4):493-9. PubMed ID: 16001384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angiographic findings following tack fixation of a wireless epiretinal retina implant device in blind RP patients.
    Roessler G; Laube T; Brockmann C; Kirschkamp T; Mazinani B; Menzel-Severing J; Bornfeld N; Walter P;
    Graefes Arch Clin Exp Ophthalmol; 2011 Sep; 249(9):1281-6. PubMed ID: 21465287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a surgical approach for a wide-view suprachoroidal retinal prosthesis: evaluation of implantation trauma.
    Villalobos J; Allen PJ; McCombe MF; Ulaganathan M; Zamir E; Ng DC; Shepherd RK; Williams CE
    Graefes Arch Clin Exp Ophthalmol; 2012 Mar; 250(3):399-407. PubMed ID: 21874343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implantation of retina stimulation electrodes and recording of electrical stimulation responses in the visual cortex of the cat.
    Hesse L; Schanze T; Wilms M; Eger M
    Graefes Arch Clin Exp Ophthalmol; 2000 Oct; 238(10):840-5. PubMed ID: 11127571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pars plana vitrectomy, phacoemulsification and intraocular lens implantation. Comparison of clinical complications in a combined versus two-step surgical approach.
    Treumer F; Bunse A; Rudolf M; Roider J
    Graefes Arch Clin Exp Ophthalmol; 2006 Jul; 244(7):808-15. PubMed ID: 16328429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subretinal implantation of semiconductor-based photodiodes: durability of novel implant designs.
    Chow AY; Pardue MT; Perlman JI; Ball SL; Chow VY; Hetling JR; Peyman GA; Liang C; Stubbs EB; Peachey NS
    J Rehabil Res Dev; 2002; 39(3):313-21. PubMed ID: 12173752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surgical feasibility and biocompatibility of wide-field dual-array suprachoroidal-transretinal stimulation prosthesis in middle-sized animals.
    Lohmann TK; Kanda H; Morimoto T; Endo T; Miyoshi T; Nishida K; Kamei M; Walter P; Fujikado T
    Graefes Arch Clin Exp Ophthalmol; 2016 Apr; 254(4):661-73. PubMed ID: 26194404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronically implanted epidural electrodes in Göttinger minipigs allow function tests of epiretinal implants.
    Laube T; Schanze T; Brockmann C; Bolle I; Stieglitz T; Bornfeld N
    Graefes Arch Clin Exp Ophthalmol; 2003 Dec; 241(12):1013-9. PubMed ID: 14605905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compound subretinal prostheses with extra-ocular parts designed for human trials: successful long-term implantation in pigs.
    Gekeler F; Szurman P; Grisanti S; Weiler U; Claus R; Greiner TO; Völker M; Kohler K; Zrenner E; Bartz-Schmidt KU
    Graefes Arch Clin Exp Ophthalmol; 2007 Feb; 245(2):230-41. PubMed ID: 16645861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implantation of Modular Photovoltaic Subretinal Prosthesis.
    Lee DY; Lorach H; Huie P; Palanker D
    Ophthalmic Surg Lasers Imaging Retina; 2016 Feb; 47(2):171-4. PubMed ID: 26878451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors affecting perceptual thresholds in epiretinal prostheses.
    de Balthasar C; Patel S; Roy A; Freda R; Greenwald S; Horsager A; Mahadevappa M; Yanai D; McMahon MJ; Humayun MS; Greenberg RJ; Weiland JD; Fine I
    Invest Ophthalmol Vis Sci; 2008 Jun; 49(6):2303-14. PubMed ID: 18515576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary study of the safety and efficacy of medium-chain triglycerides for use as an intraocular tamponading agent in minipigs.
    Soler VJ; Laurent C; Sakr F; Regnier A; Tricoire C; Cases O; Kozyraki R; Douet JY; Pagot-Mathis V
    Graefes Arch Clin Exp Ophthalmol; 2017 Aug; 255(8):1593-1604. PubMed ID: 28547316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.