BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 21861110)

  • 1. Unchanged muscle fiber conduction velocity relates to mild acidosis during exhaustive bicycling.
    Schmitz JP; van Dijk JP; Hilbers PA; Nicolay K; Jeneson JA; Stegeman DF
    Eur J Appl Physiol; 2012 May; 112(5):1593-602. PubMed ID: 21861110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supernormal muscle fiber conduction velocity during intermittent isometric exercise in human muscle.
    Van der Hoeven JH; Lange F
    J Appl Physiol (1985); 1994 Aug; 77(2):802-6. PubMed ID: 8002531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle fiber conduction velocity during isometric contraction and the recovery period.
    Sakamoto K; Mito K
    Electromyogr Clin Neurophysiol; 2000; 40(3):151-61. PubMed ID: 10812538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reproducibility of muscle fibre conduction velocity during linearly increasing force contractions.
    Casolo A; Nuccio S; Bazzucchi I; Felici F; Del Vecchio A
    J Electromyogr Kinesiol; 2020 Aug; 53():102439. PubMed ID: 32563844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of contraction force and speed on muscle fiber conduction velocity during dynamic voluntary exercise.
    Masuda T; Kizuka T; Zhe JY; Yamada H; Saitou K; Sadoyama T; Okada M
    J Electromyogr Kinesiol; 2001 Apr; 11(2):85-94. PubMed ID: 11228422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repeated ischaemic isometric exercise increases muscle fibre conduction velocity in humans: involvement of Na(+)-K(+)-ATPase.
    Rongen GA; van Dijk JP; van Ginneken EE; Stegeman DF; Smits P; Zwarts MJ
    J Physiol; 2002 May; 540(Pt 3):1071-8. PubMed ID: 11986391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in muscle fiber conduction velocity indicate recruitment of distinct motor unit populations.
    Houtman CJ; Stegeman DF; Van Dijk JP; Zwarts MJ
    J Appl Physiol (1985); 2003 Sep; 95(3):1045-54. PubMed ID: 12766181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle fibre conduction velocity and cardiorespiratory response during incremental cycling exercise in young and older individuals with different training status.
    Lenti M; De Vito G; Sbriccoli P; Scotto di Palumbo A; Sacchetti M
    J Electromyogr Kinesiol; 2010 Aug; 20(4):566-71. PubMed ID: 20202863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the evaluation of muscle fiber conduction velocity considering waveform properties of an electromyogram in M. biceps brachii during voluntary isometric contraction.
    Mito K; Sakamoto K
    Electromyogr Clin Neurophysiol; 2002; 42(3):137-49. PubMed ID: 11977427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromyogram median frequency, spectral compression and muscle fibre conduction velocity during sustained sub-maximal contraction of the brachioradialis muscle.
    Lowery M; Nolan P; O'Malley M
    J Electromyogr Kinesiol; 2002 Apr; 12(2):111-8. PubMed ID: 11955983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of electromyographic variables during incremental and fatiguing cycling.
    Macdonald JH; Farina D; Marcora SM
    Med Sci Sports Exerc; 2008 Feb; 40(2):335-44. PubMed ID: 18202567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variability of estimates of muscle fiber conduction velocity and surface EMG amplitude across subjects and processing intervals.
    Del Vecchio A; Bazzucchi I; Felici F
    J Electromyogr Kinesiol; 2018 Jun; 40():102-109. PubMed ID: 29705496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-invasive assessment of muscle fiber conduction velocity during an incremental maximal cycling test.
    Sbriccoli P; Sacchetti M; Felici F; Gizzi L; Lenti M; Scotto A; De Vito G
    J Electromyogr Kinesiol; 2009 Dec; 19(6):e380-6. PubMed ID: 19398350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new surface electromyography analysis method to determine spread of muscle fiber conduction velocities.
    Lange F; Van Weerden TW; Van Der Hoeven JH
    J Appl Physiol (1985); 2002 Aug; 93(2):759-64. PubMed ID: 12133889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of experimental and numerical muscle fiber conduction velocity (MFCV) distribution around the end-plate zone and fiber endings.
    Mito K; Kaneko K; Makabe H; Takanokura M; Sakamoto K
    Med Sci Monit; 2006 Apr; 12(4):BR115-23. PubMed ID: 16572043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of estimated muscle fiber conduction velocity with the normalized peak-averaging technique.
    Nishihara K; Futami T; Hosoda K; Gomi T
    J Electromyogr Kinesiol; 2005 Feb; 15(1):93-101. PubMed ID: 15642657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle fiber conduction velocity of the vastus medilais and lateralis muscle after eccentric exercise induced-muscle damage.
    Nasrabadi R; Izanloo Z; Sharifnezad A; Hamedinia MR; Hedayatpour N
    J Electromyogr Kinesiol; 2018 Dec; 43():118-126. PubMed ID: 30273919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between innervation zone width and mean muscle fiber conduction velocity during a sustained isometric contraction.
    Ye X; Beck TW; Wages NP
    J Musculoskelet Neuronal Interact; 2015 Mar; 15(1):95-102. PubMed ID: 25730657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of muscle fiber conduction velocity of m. masseter during voluntary isometric contraction.
    Mito K; Sakamoto K
    Electromyogr Clin Neurophysiol; 2000; 40(5):275-85. PubMed ID: 10938994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electromyographic adjustments during continuous and intermittent incremental fatiguing cycling.
    Martinez-Valdes E; Guzman-Venegas RA; Silvestre RA; Macdonald JH; Falla D; Araneda OF; Haichelis D
    Scand J Med Sci Sports; 2016 Nov; 26(11):1273-1282. PubMed ID: 26493490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.