BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 21861293)

  • 1. Mitochondria-targeting single-walled carbon nanotubes for cancer photothermal therapy.
    Zhou F; Wu S; Wu B; Chen WR; Xing D
    Small; 2011 Oct; 7(19):2727-35. PubMed ID: 21861293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondria-targeting photoacoustic therapy using single-walled carbon nanotubes.
    Zhou F; Wu S; Yuan Y; Chen WR; Xing D
    Small; 2012 May; 8(10):1543-50. PubMed ID: 22422554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic anticancer effect of RNAi and photothermal therapy mediated by functionalized single-walled carbon nanotubes.
    Wang L; Shi J; Zhang H; Li H; Gao Y; Wang Z; Wang H; Li L; Zhang C; Chen C; Zhang Z; Zhang Y
    Biomaterials; 2013 Jan; 34(1):262-74. PubMed ID: 23046752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes.
    Moon HK; Lee SH; Choi HC
    ACS Nano; 2009 Nov; 3(11):3707-13. PubMed ID: 19877694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting single-walled carbon nanotubes for the treatment of breast cancer using photothermal therapy.
    Neves LF; Krais JJ; Van Rite BD; Ramesh R; Resasco DE; Harrison RG
    Nanotechnology; 2013 Sep; 24(37):375104. PubMed ID: 23975064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power.
    Yang K; Wan J; Zhang S; Tian B; Zhang Y; Liu Z
    Biomaterials; 2012 Mar; 33(7):2206-14. PubMed ID: 22169821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors.
    Liu X; Tao H; Yang K; Zhang S; Lee ST; Liu Z
    Biomaterials; 2011 Jan; 32(1):144-51. PubMed ID: 20888630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave pumped high-efficient thermoacoustic tumor therapy with single wall carbon nanotubes.
    Wen L; Ding W; Yang S; Xing D
    Biomaterials; 2016 Jan; 75():163-173. PubMed ID: 26513410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noncovalent functionalization of single-walled carbon nanotubes by indocyanine green: Potential nanocomplexes for photothermal therapy.
    Zheng X; Zhou F
    J Xray Sci Technol; 2011; 19(2):275-84. PubMed ID: 21606588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Golden single-walled carbon nanotubes prepared using double layer polysaccharides bridge for photothermal therapy.
    Meng L; Xia W; Liu L; Niu L; Lu Q
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4989-96. PubMed ID: 24606763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photothermal-triggered control of sub-cellular drug accumulation using doxorubicin-loaded single-walled carbon nanotubes for the effective killing of human breast cancer cells.
    Oh Y; Jin JO; Oh J
    Nanotechnology; 2017 Mar; 28(12):125101. PubMed ID: 28145889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photothermal ablation of tumor cells using a single-walled carbon nanotube-peptide composite.
    Hashida Y; Tanaka H; Zhou S; Kawakami S; Yamashita F; Murakami T; Umeyama T; Imahori H; Hashida M
    J Control Release; 2014 Jan; 173():59-66. PubMed ID: 24211651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesoscopic modeling of cancer photothermal therapy using single-walled carbon nanotubes and near infrared radiation: insights through an off-lattice Monte Carlo approach.
    Gong F; Hongyan Z; Papavassiliou DV; Bui K; Lim C; Duong HM
    Nanotechnology; 2014 May; 25(20):205101. PubMed ID: 24784034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vascular targeted single-walled carbon nanotubes for near-infrared light therapy of cancer.
    Prickett WM; Van Rite BD; Resasco DE; Harrison RG
    Nanotechnology; 2011 Nov; 22(45):455101. PubMed ID: 21993223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TiO2 nanotubes as a therapeutic agent for cancer thermotherapy.
    Lee C; Hong C; Kim H; Kang J; Zheng HM
    Photochem Photobiol; 2010; 86(4):981-9. PubMed ID: 20408983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targetable gold nanorods for epithelial cancer therapy guided by near-IR absorption imaging.
    Choi J; Yang J; Bang D; Park J; Suh JS; Huh YM; Haam S
    Small; 2012 Mar; 8(5):746-53. PubMed ID: 22271594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes.
    Zhou F; Xing D; Ou Z; Wu B; Resasco DE; Chen WR
    J Biomed Opt; 2009; 14(2):021009. PubMed ID: 19405722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(ethylene glycol)-modified gold nanorods as a photothermal nanodevice for hyperthermia.
    Niidome T; Akiyama Y; Yamagata M; Kawano T; Mori T; Niidome Y; Katayama Y
    J Biomater Sci Polym Ed; 2009; 20(9):1203-15. PubMed ID: 19520008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancer-cell targeting and photoacoustic therapy using carbon nanotubes as "bomb" agents.
    Kang B; Yu D; Dai Y; Chang S; Chen D; Ding Y
    Small; 2009 Jun; 5(11):1292-301. PubMed ID: 19274646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-low doses of chirality sorted (6,5) carbon nanotubes for simultaneous tumor imaging and photothermal therapy.
    Antaris AL; Robinson JT; Yaghi OK; Hong G; Diao S; Luong R; Dai H
    ACS Nano; 2013 Apr; 7(4):3644-52. PubMed ID: 23521224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.