These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 21861368)

  • 1. Phosphonoacetate biosynthesis: in vitro detection of a novel NADP(+)-dependent phosphonoacetaldehyde-oxidizing activity in cell-extracts of the marine Roseovarius nubinhibens ISM.
    Cooley NA; Kulakova AN; Villarreal-Chiu JF; Gilbert JA; McGrath JW; Quinn JP
    Mikrobiologiia; 2011; 80(3):329-34. PubMed ID: 21861368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate starvation-independent 2-aminoethylphosphonic acid biodegradation in a newly isolated strain of Pseudomonas putida, NG2.
    Ternan NG; Quinn JP
    Syst Appl Microbiol; 1998 Aug; 21(3):346-52. PubMed ID: 9841125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bifurcated degradative pathway of 3-sulfolactate in Roseovarius nubinhibens ISM via sulfoacetaldehyde acetyltransferase and (S)-cysteate sulfolyase.
    Denger K; Mayer J; Buhmann M; Weinitschke S; Smits TH; Cook AM
    J Bacteriol; 2009 Sep; 191(18):5648-56. PubMed ID: 19581363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function of phosphonoacetaldehyde dehydrogenase: the missing link in phosphonoacetate formation.
    Agarwal V; Peck SC; Chen JH; Borisova SA; Chekan JR; van der Donk WA; Nair SK
    Chem Biol; 2014 Jan; 21(1):125-35. PubMed ID: 24361046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A role for carbon catabolite repression in the metabolism of phosphonoacetate by Agromyces fucosus Vs2.
    O'Loughlin SN; Graham RL; McMullan G; Ternan NG
    FEMS Microbiol Lett; 2006 Aug; 261(1):133-40. PubMed ID: 16842370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2-Aminoethylphosphonate utilization by the cold-adapted Geomyces pannorum P11 strain.
    Klimek-Ochab M; Mucha A; Zymańczyk-Duda E
    Curr Microbiol; 2014 Mar; 68(3):330-5. PubMed ID: 24162513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The construction of a whole-cell biosensor for phosphonoacetate, based on the LysR-like transcriptional regulator PhnR from Pseudomonas fluorescens 23F.
    Kulakova AN; Kulakov LA; McGrath JW; Quinn JP
    Microb Biotechnol; 2009 Mar; 2(2):234-40. PubMed ID: 21261917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of two new microbial strains capable of degradation of the naturally occurring organophosphonate - ciliatine.
    Klimek-Ochab M; Obojska A; Picco AM; Lejczak B
    Biodegradation; 2007 Apr; 18(2):223-31. PubMed ID: 16758270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic and biochemical characterization of a pathway for the degradation of 2-aminoethylphosphonate in Sinorhizobium meliloti 1021.
    Borisova SA; Christman HD; Metcalf ME; Zulkepli NA; Zhang JK; van der Donk WA; Metcalf WW
    J Biol Chem; 2011 Jun; 286(25):22283-90. PubMed ID: 21543322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural characterization of a 2-aminoethylphosphonate:pyruvate aminotransferase from Pseudomonas aeruginosa PAO1.
    Jia H; Chen Y; Chen Y; Liu R; Zhang Q; Bartlam M
    Biochem Biophys Res Commun; 2021 May; 552():114-119. PubMed ID: 33743347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A metal-independent hydrolase from a Penicillium oxalicum strain able to use phosphonoacetic acid as the only phosphorus source.
    Klimek-Ochab M; Lejczak B; Forlani G
    FEMS Microbiol Lett; 2003 May; 222(2):205-9. PubMed ID: 12770709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of 2-amino-3-phosphono[3-14C]propionic acid in cell-free preparations of Tetrahymena.
    Horigane A; Horiguchi M; Matsumoto T
    Biochim Biophys Acta; 1980 Jun; 618(3):383-8. PubMed ID: 6772229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro characterization of a phosphate starvation-independent carbon-phosphorus bond cleavage activity in Pseudomonas fluorescens 23F.
    McMullan G; Quinn JP
    J Bacteriol; 1994 Jan; 176(2):320-4. PubMed ID: 8288524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and mechanistic insights into C-P bond hydrolysis by phosphonoacetate hydrolase.
    Agarwal V; Borisova SA; Metcalf WW; van der Donk WA; Nair SK
    Chem Biol; 2011 Oct; 18(10):1230-40. PubMed ID: 22035792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential for phosphonoacetate utilization by marine bacteria in temperate coastal waters.
    Gilbert JA; Thomas S; Cooley NA; Kulakova A; Field D; Booth T; McGrath JW; Quinn JP; Joint I
    Environ Microbiol; 2009 Jan; 11(1):111-25. PubMed ID: 18783384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of a novel carbon-phosphorus bond cleavage activity in cell-free extracts of an environmental Pseudomonas fluorescens isolate.
    McMullan G; Quinn JP
    Biochem Biophys Res Commun; 1992 Apr; 184(2):1022-7. PubMed ID: 1575721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The 2-aminoethylphosphonate-specific transaminase of the 2-aminoethylphosphonate degradation pathway.
    Kim AD; Baker AS; Dunaway-Mariano D; Metcalf WW; Wanner BL; Martin BM
    J Bacteriol; 2002 Aug; 184(15):4134-40. PubMed ID: 12107130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation pathway of the phosphonate ciliatine: crystal structure of 2-aminoethylphosphonate transaminase.
    Chen CC; Zhang H; Kim AD; Howard A; Sheldrick GM; Mariano-Dunaway D; Herzberg O
    Biochemistry; 2002 Nov; 41(44):13162-9. PubMed ID: 12403617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphonoacetic acid utilization by fungal isolates: occurrence and properties of a phosphonoacetate hydrolase in some penicillia.
    Forlani G; Klimek-Ochab M; Jaworski J; Lejczak B; Picco AM
    Mycol Res; 2006 Dec; 110(Pt 12):1455-63. PubMed ID: 17123811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphonate utilization by bacteria.
    Cook AM; Daughton CG; Alexander M
    J Bacteriol; 1978 Jan; 133(1):85-90. PubMed ID: 618850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.