These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 21861529)

  • 1. Competitive and synergistic effects in pH dependent phosphate adsorption in soils: LCD modeling.
    Weng L; Vega FA; Van Riemsdijk WH
    Environ Sci Technol; 2011 Oct; 45(19):8420-8. PubMed ID: 21861529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenate and phosphate adsorption in relation to oxides composition in soils: LCD modeling.
    Cui Y; Weng L
    Environ Sci Technol; 2013 Jul; 47(13):7269-76. PubMed ID: 23751067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors controlling phosphate interaction with iron oxides.
    Weng L; Van Riemsdijk WH; Hiemstra T
    J Environ Qual; 2012; 41(3):628-35. PubMed ID: 22565244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox-dependent effects of phosphate on arsenic speciation in paddy soils.
    Deng Y; Weng L; Li Y; Chen Y; Ma J
    Environ Pollut; 2020 Sep; 264():114783. PubMed ID: 32428817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils.
    Park JH; Bolan N; Megharaj M; Naidu R
    Sci Total Environ; 2011 Jan; 409(4):853-60. PubMed ID: 21130488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pH on the adsorption of carbendazim in Polish mineral soils.
    Paszko T
    Sci Total Environ; 2012 Oct; 435-436():222-9. PubMed ID: 22854093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting soil-water partition coefficients for Hg(II) from soil properties.
    Lee SZ; Chang L; Chen CM; Tsai YI; Liu MC
    Water Sci Technol; 2001; 43(2):187-96. PubMed ID: 11380179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions.
    Cao X; Ma LQ; Singh SP; Zhou Q
    Environ Pollut; 2008 Mar; 152(1):184-92. PubMed ID: 17601642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of phosphate on the adsorption of glyphosate on three different types of Chinese soils.
    Wang YJ; Zhou DM; Sun RJ
    J Environ Sci (China); 2005; 17(5):711-5. PubMed ID: 16312989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of pH and the role of organic matter in the adsorption of isoproturon on soils.
    Ertli T; Marton A; Földényi R
    Chemosphere; 2004 Nov; 57(8):771-9. PubMed ID: 15488568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of phosphorus solubilisation in a limed soil as a function of pH.
    McDowell RW; Mahieu N; Brookes PC; Poulton PR
    Chemosphere; 2003 Jun; 51(8):685-92. PubMed ID: 12668027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling phosphate adsorption to the soil: application of the non-ideal competitive adsorption model.
    Nohra JS; Madramootoo CA; Hendershot WH
    Environ Pollut; 2007 Sep; 149(1):1-9. PubMed ID: 17360089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interpreting competitive adsorption of arsenate and phosphate on nanosized iron (hydr)oxides: effects of pH and surface loading.
    Han J; Ro HM
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):28572-28582. PubMed ID: 30091077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can we predict uranium bioavailability based on soil parameters? Part 1: effect of soil parameters on soil solution uranium concentration.
    Vandenhove H; Van Hees M; Wouters K; Wannijn J
    Environ Pollut; 2007 Jan; 145(2):587-95. PubMed ID: 16781802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of 2,4-dichlorophenoxyacetic acid by an Andosol.
    Hiradate S; Furubayashi A; Uchida N; Fujii Y
    J Environ Qual; 2007; 36(1):101-9. PubMed ID: 17215217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of phthalic acid and salicylic acid and their effect on exchangeable Al capacity of variable-charge soils.
    Li J; Xu R
    J Colloid Interface Sci; 2007 Feb; 306(1):3-10. PubMed ID: 17095003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What do results of common sequential fractionation and single-step extractions tell us about P binding with Fe and Al compounds in non-calcareous sediments?
    Jan J; Borovec J; Kopáček J; Hejzlar J
    Water Res; 2013 Feb; 47(2):547-57. PubMed ID: 23218245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding major NOM properties controlling its interactions with phosphorus and arsenic at goethite-water interface.
    Deng Y; Weng L; Li Y; Ma J; Chen Y
    Water Res; 2019 Jun; 157():372-380. PubMed ID: 30974286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of humified organic matter on copper behavior in acid polluted soils.
    Fernández-Calviño D; Soler-Rovira P; Polo A; Arias-Estévez M; Plaza C
    Environ Pollut; 2010 Dec; 158(12):3634-41. PubMed ID: 20832151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand and Charge Distribution (LCD) model for the description of fulvic acid adsorption to goethite.
    Weng L; Van Riemsdijk WH; Koopal LK; Hiemstra T
    J Colloid Interface Sci; 2006 Oct; 302(2):442-57. PubMed ID: 16887135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.