These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 21862394)

  • 1. Resonance light scattering method for the determination of DNA with cationic methacrylate based polymer nanoparticle probes.
    Zou QC; Zhang JZ; Chai SG
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Nov; 82(1):437-43. PubMed ID: 21862394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of DNA using cationic polyhedral oligomeric silsesquioxane nanoparticles as the probe by resonance light scattering technique.
    Zou QC; Yan QJ; Song GW; Zhang SL; Wu LM
    Biosens Bioelectron; 2007 Feb; 22(7):1461-5. PubMed ID: 16884901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced two-photon emission in coupled metal nanoparticles induced by conjugated polymers.
    Guan Z; Polavarapu L; Xu QH
    Langmuir; 2010 Dec; 26(23):18020-3. PubMed ID: 21028762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel zwitterionic-polymer-coated silica nanoparticles.
    Jia G; Cao Z; Xue H; Xu Y; Jiang S
    Langmuir; 2009 Mar; 25(5):3196-9. PubMed ID: 19437722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of temperature-responsive poly(N-isopropyl acrylamide)/poly(methyl methacrylate)/silica hybrid capsules from inverse pickering emulsion polymerization and their application in controlled drug release.
    Zhang K; Wu W; Guo K; Chen J; Zhang P
    Langmuir; 2010 Jun; 26(11):7971-80. PubMed ID: 20178344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective determination of cysteine by resonance light scattering technique based on self-assembly of gold nanoparticles.
    Li ZP; Duan XR; Liu CH; Du BA
    Anal Biochem; 2006 Apr; 351(1):18-25. PubMed ID: 16500604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size distribution of superparamagnetic particles determined by magnetic sedimentation.
    Berret JF; Sandre O; Mauger A
    Langmuir; 2007 Mar; 23(6):2993-9. PubMed ID: 17284055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-molecule technology for rapid detection of DNA hybridization based on resonance light scattering of gold nanoparticles.
    Wang K; Qiu X; Dong C; Ren J
    Chembiochem; 2007 Jul; 8(10):1126-9. PubMed ID: 17506038
    [No Abstract]   [Full Text] [Related]  

  • 9. Facile route to enzyme immobilization: core-shell nanoenzyme particles consisting of well-defined poly(methyl methacrylate) cores and cellulase shells.
    Ho KM; Mao X; Gu L; Li P
    Langmuir; 2008 Oct; 24(19):11036-42. PubMed ID: 18788820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanoparticle based plasmon resonance light-scattering method as a new approach for glycogen-biomacromolecule interactions.
    Xiang M; Xu X; Liu F; Li N; Li KA
    J Phys Chem B; 2009 Mar; 113(9):2734-8. PubMed ID: 19708110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and spectroscopic characterization of gold nanoparticles.
    Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):80-5. PubMed ID: 18155956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coating and dispersion of ceramic nanoparticles by UV-ozone etching assisted surface-initiated living radical polymerization.
    Arita T
    Nanoscale; 2010 Oct; 2(10):2073-6. PubMed ID: 20721364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of DNA based on localized surface plasmon resonance light scattering using unmodified gold bipyramids.
    Qi H; Bi N; Chen Y; Zheng X; Zhang H; Wang X; Chen Y; Tian Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 81(1):769-73. PubMed ID: 21784699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size controlled synthesis of sub-100 nm monodisperse poly(methylmethacrylate) nanoparticles using surfactant-free emulsion polymerization.
    Camli ST; Buyukserin F; Balci O; Budak GG
    J Colloid Interface Sci; 2010 Apr; 344(2):528-32. PubMed ID: 20138293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitive determination of nucleic acids using organic nanoparticle fluorescence probes.
    Zhou Y; Bian G; Wang L; Dong L; Wang L; Kan J
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jun; 61(8):1841-5. PubMed ID: 15863055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responsive polymer nanoparticles formed by poly(ether amine) containing coumarin units and a poly(ethylene oxide) short chain.
    Jiang X; Wang R; Ren Y; Yin J
    Langmuir; 2009 Sep; 25(17):9629-32. PubMed ID: 19642654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic study of the formation of polypyrrole nanoparticles in water-soluble polymer/metal cation systems: a light-scattering analysis.
    Hong JY; Yoon H; Jang J
    Small; 2010 Mar; 6(5):679-86. PubMed ID: 20127667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of photon correlation spectroscopy method for measuring nanoparticle size by using attenuated total reflectance.
    Krishtop V; Doronin I; Okishev K
    Opt Express; 2012 Nov; 20(23):25693-9. PubMed ID: 23187387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled clustering of superparamagnetic nanoparticles using block copolymers: design of new contrast agents for magnetic resonance imaging.
    Berret JF; Schonbeck N; Gazeau F; El Kharrat D; Sandre O; Vacher A; Airiau M
    J Am Chem Soc; 2006 Feb; 128(5):1755-61. PubMed ID: 16448152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of poly(methyl methacrylate) grafted hydroxyapatite nanoparticles via reverse ATRP.
    Wang Y; Xiao Y; Huang X; Lang M
    J Colloid Interface Sci; 2011 Aug; 360(2):415-21. PubMed ID: 21601216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.