BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 21862402)

  • 41. Comprehensive assessment of the indoor air quality in a chlorinated Olympic-size swimming pool.
    Felgueiras F; Mourão Z; Morais C; Santos H; Gabriel MF; de Oliveira Fernandes E
    Environ Int; 2020 Mar; 136():105401. PubMed ID: 31884411
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Seasonal variation of trihalomethane formation potential in treated water supplies of Delhi City (India).
    Hasan A; Thacker N; Bassin J
    J Environ Sci Eng; 2010 Jul; 52(3):235-40. PubMed ID: 21391397
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of UV 254 irradiation on residual chlorine and DBPs in chlorination of model organic-N precursors in swimming pools.
    Weng S; Li J; Blatchley ER
    Water Res; 2012 May; 46(8):2674-82. PubMed ID: 22425148
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modeling daily variation of trihalomethane compounds in drinking water system, Houston, Texas.
    Chaib E; Moschandreas D
    J Hazard Mater; 2008 Mar; 151(2-3):662-8. PubMed ID: 17658688
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Predicting human exposure and risk from chlorinated indoor swimming pool: a case study.
    Chowdhury S
    Environ Monit Assess; 2015 Aug; 187(8):502. PubMed ID: 26164734
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Disinfection by-products in filter backwash water: implications to water quality in recycle designs.
    McCormick NJ; Porter M; Walsh ME
    Water Res; 2010 Aug; 44(15):4581-9. PubMed ID: 20561666
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Exposure to chloroform in persons frequenting an indoor swimming pool].
    Olivo R; Aggazzotti G; Fantuzzi G; Predieri G; Tamburi M
    Ann Ig; 1989; 1(1-2):173-83. PubMed ID: 2483065
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Trichloramine reactions with nitrogenous and carbonaceous compounds: kinetics, products and chloroform formation.
    Soltermann F; Canonica S; von Gunten U
    Water Res; 2015 Mar; 71():318-29. PubMed ID: 25655201
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Health effects of disinfection by-products in chlorinated swimming pools.
    Florentin A; Hautemanière A; Hartemann P
    Int J Hyg Environ Health; 2011 Nov; 214(6):461-9. PubMed ID: 21885333
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of a sensitive thermal desorption method for the determination of trihalomethanes in humid ambient and alveolar air.
    Caro J; Gallego M
    Talanta; 2008 Aug; 76(4):847-53. PubMed ID: 18656668
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pathways of trihalomethane uptake in swimming pools.
    Erdinger L; Kühn KP; Kirsch F; Feldhues R; Fröbel T; Nohynek B; Gabrio T
    Int J Hyg Environ Health; 2004 Dec; 207(6):571-5. PubMed ID: 15729838
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Predicting bromide incorporation in a chlorinated indoor swimming pool.
    Chowdhury S; Mazumder AJ; Husain T
    Environ Sci Pollut Res Int; 2016 Jun; 23(12):12174-84. PubMed ID: 26971516
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optimal pH in chlorinated swimming pools - balancing formation of by-products.
    Hansen KM; Albrechtsen HJ; Andersen HR
    J Water Health; 2013 Sep; 11(3):465-72. PubMed ID: 23981875
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Occurrence of THMs and HAAs in experimental chlorinated waters of the Quebec City area (Canada).
    Sérodes JB; Rodriguez MJ; Li H; Bouchard C
    Chemosphere; 2003 Apr; 51(4):253-63. PubMed ID: 12604077
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of physical activity in the intake of trihalomethanes in indoor swimming pools.
    Marco E; Lourencetti C; Grimalt JO; Gari M; Fernández P; Font-Ribera L; Villanueva CM; Kogevinas M
    Environ Res; 2015 Jul; 140():292-9. PubMed ID: 25885117
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Disinfection by-product formation following chlorination of drinking water: artificial neural network models and changes in speciation with treatment.
    Kulkarni P; Chellam S
    Sci Total Environ; 2010 Sep; 408(19):4202-10. PubMed ID: 20580059
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sources of variability in levels and exposure to trihalomethanes.
    Villanueva CM; Gagniere B; Monfort C; Nieuwenhuijsen MJ; Cordier S
    Environ Res; 2007 Feb; 103(2):211-20. PubMed ID: 17189628
    [TBL] [Abstract][Full Text] [Related]  

  • 58. New method for determination of trihalomethanes in exhaled breath: applications to swimming pool and bath environments.
    Lourencetti C; Ballester C; Fernández P; Marco E; Prado C; Periago JF; Grimalt JO
    Anal Chim Acta; 2010 Mar; 662(1):23-30. PubMed ID: 20152261
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Concentration levels of urea in swimming pool water and reactivity of chlorine with urea.
    De Laat J; Feng W; Freyfer DA; Dossier-Berne F
    Water Res; 2011 Jan; 45(3):1139-46. PubMed ID: 21115186
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of byproduct formation in waters treated with chlorine and iodine: relevance to point-of-use treatment.
    Smith EM; Plewa MJ; Lindell CL; Richardson SD; Mitch WA
    Environ Sci Technol; 2010 Nov; 44(22):8446-52. PubMed ID: 20964286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.