These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 21862424)

  • 1. The problem of energy transfer in proteins: physical modeling and biological reality: comment on "The theory of bio-energy transport in the protein molecules and its properties" by Pang Xiao-feng.
    Gaididei Y; Volkov S
    Phys Life Rev; 2011 Oct; 8(3):298-9; discussion 302-6. PubMed ID: 21862424
    [No Abstract]   [Full Text] [Related]  

  • 2. Physical insights to the bio-energy transport in the protein molecules: comment on "The theory of bio-energy transport in the protein molecules and its properties" by Pang Xiao-feng.
    Liang SD
    Phys Life Rev; 2011 Oct; 8(3):287-8; discussion 302-6. PubMed ID: 21820981
    [No Abstract]   [Full Text] [Related]  

  • 3. The modeling of energy transport for life goes on: comment on "The theory of bio-energy transport in the protein molecules and its properties" by Xiao-feng Pang.
    Pong PW
    Phys Life Rev; 2011 Oct; 8(3):289-90; discussion 302-6. PubMed ID: 21820370
    [No Abstract]   [Full Text] [Related]  

  • 4. An important biological theory--solving the transport of bio-energy in living systems: comment on "The theory of bio-energy transport in the protein molecules and its properties" by Pang Xiao-feng.
    He N
    Phys Life Rev; 2011 Oct; 8(3):296-7; discussion 302-6. PubMed ID: 21831729
    [No Abstract]   [Full Text] [Related]  

  • 5. The function of soliton on bio-energy transport in the protein molecules: comment on "The theory of bio-energy transport in the protein molecules and its properties" by Xiao-feng Pang.
    Song T
    Phys Life Rev; 2011 Oct; 8(3):291-2; discussion 302-6. PubMed ID: 21852208
    [No Abstract]   [Full Text] [Related]  

  • 6. Energy conservation versus conservation of energy: comment on "The theory of bio-energy transport in the protein molecules and its properties" by Xiao-Feng Pang.
    Grosberg AY
    Phys Life Rev; 2011 Oct; 8(3):293-5; discussion 302-6. PubMed ID: 21835704
    [No Abstract]   [Full Text] [Related]  

  • 7. Davydov-Pang model: an improved Davydov protein soliton theory: comment on "The theory of bio-energy transport in the protein molecules and its properties" by Xiaofeng Pang.
    Su XD; Jin FJ
    Phys Life Rev; 2011 Oct; 8(3):300-1; discussion 302-6. PubMed ID: 21900056
    [No Abstract]   [Full Text] [Related]  

  • 8. The theory of bio-energy transport in the protein molecules and its properties.
    Pang XF
    Phys Life Rev; 2011 Oct; 8(3):264-86. PubMed ID: 21782532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of the Davydov theory of bioenergy transport in protein molecular systems.
    Pang XF
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt B):6989-98. PubMed ID: 11102055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The properties of bio-energy transport and influence of structure nonuniformity and temperature of systems on energy transport along polypeptide chains.
    Pang XF
    Prog Biophys Mol Biol; 2012 Jan; 108(1-2):1-46. PubMed ID: 21951575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Mechanisms of energy transfer in biological structures: the role of hydrogen bonds].
    Stefanov VE; Karasev VA
    Nerv Sist; 1986; 25():49-74. PubMed ID: 3020458
    [No Abstract]   [Full Text] [Related]  

  • 12. Vesicle adhesion reveals novel universal relationships for biophysical characterization.
    Irajizad E; Agrawal A
    Biomech Model Mechanobiol; 2018 Feb; 17(1):103-109. PubMed ID: 28825147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of long-distance electron transfer in proteins: lessons from photosynthetic reaction centers.
    Boxer SG
    Annu Rev Biophys Biophys Chem; 1990; 19():267-99. PubMed ID: 2194478
    [No Abstract]   [Full Text] [Related]  

  • 14. Cellular motions and thermal fluctuations: the Brownian ratchet.
    Peskin CS; Odell GM; Oster GF
    Biophys J; 1993 Jul; 65(1):316-24. PubMed ID: 8369439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The Relaxation Model of Ideal Folding in a Homogeneous Viscous Medium].
    Shaitan KV
    Biofizika; 2015; 60(5):843-52. PubMed ID: 26591594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Go with the flow: connecting energy demand, hydropower, and fish using constructal theory: comment on "The constructal law and the evolution of design in nature" by Adrian Bejan and Sylvie Lorente.
    Tuhtan JA
    Phys Life Rev; 2011 Oct; 8(3):253-4; discussion 261-3. PubMed ID: 21783439
    [No Abstract]   [Full Text] [Related]  

  • 17. Epilachnini (Coleoptera: Coccinellidae)-A Revision of the World Genera.
    Tomaszewska W; Szawaryn K
    J Insect Sci; 2016; 16(1):. PubMed ID: 27651424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical modulation of membrane proteins: enforced conformational oscillations and biological energy and signal transductions.
    Tsong TY
    Annu Rev Biophys Biophys Chem; 1990; 19():83-106. PubMed ID: 2163641
    [No Abstract]   [Full Text] [Related]  

  • 19. Crystal nucleation for a model of globular proteins.
    Shiryayev A; Gunton JD
    J Chem Phys; 2004 May; 120(17):8318-26. PubMed ID: 15267753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-water electrostatics and principles of bioenergetics.
    Lebard DN; Matyushov DV
    Phys Chem Chem Phys; 2010 Dec; 12(47):15335-48. PubMed ID: 20972505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.