These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 21862703)

  • 1. Fluorescence image screening for chemical compounds modifying cholesterol metabolism and distribution.
    Ishitsuka R; Saito T; Osada H; Ohno-Iwashita Y; Kobayashi T
    J Lipid Res; 2011 Nov; 52(11):2084-94. PubMed ID: 21862703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated microscopy screening for compounds that partially revert cholesterol accumulation in Niemann-Pick C cells.
    Pipalia NH; Huang A; Ralph H; Rujoi M; Maxfield FR
    J Lipid Res; 2006 Feb; 47(2):284-301. PubMed ID: 16288097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotinylated theta-toxin derivative as a probe to examine intracellular cholesterol-rich domains in normal and Niemann-Pick type C1 cells.
    Sugii S; Reid PC; Ohgami N; Shimada Y; Maue RA; Ninomiya H; Ohno-Iwashita Y; Chang TY
    J Lipid Res; 2003 May; 44(5):1033-41. PubMed ID: 12562855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular and Plasma Membrane Cholesterol Labeling and Quantification Using Filipin and GFP-D4.
    Wilhelm LP; Voilquin L; Kobayashi T; Tomasetto C; Alpy F
    Methods Mol Biol; 2019; 1949():137-152. PubMed ID: 30790254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of plasma membrane-derived cholesterol and the function of Niemann-Pick C1 Protein.
    Wiegand V; Chang TY; Strauss JF; Fahrenholz F; Gimpl G
    FASEB J; 2003 Apr; 17(6):782-4. PubMed ID: 12594172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective Aster inhibitors distinguish vesicular and nonvesicular sterol transport mechanisms.
    Xiao X; Kim Y; Romartinez-Alonso B; Sirvydis K; Ory DS; Schwabe JWR; Jung ME; Tontonoz P
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33376205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FRET-based calcium imaging: a tool for high-throughput/content phenotypic drug screening in Alzheimer disease.
    Honarnejad K; Kirsch AK; Daschner A; Szybinska A; Kuznicki J; Herms J
    J Biomol Screen; 2013 Dec; 18(10):1309-20. PubMed ID: 24221842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. STARD3 mediates endoplasmic reticulum-to-endosome cholesterol transport at membrane contact sites.
    Wilhelm LP; Wendling C; Védie B; Kobayashi T; Chenard MP; Tomasetto C; Drin G; Alpy F
    EMBO J; 2017 May; 36(10):1412-1433. PubMed ID: 28377464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular cholesterol trafficking: role of the NPC1 protein.
    Blanchette-Mackie EJ
    Biochim Biophys Acta; 2000 Jun; 1486(1):171-83. PubMed ID: 10856720
    [No Abstract]   [Full Text] [Related]  

  • 10. Cholesterol pathways affected by small molecules that decrease sterol levels in Niemann-Pick type C mutant cells.
    Rujoi M; Pipalia NH; Maxfield FR
    PLoS One; 2010 Sep; 5(9):e12788. PubMed ID: 20877719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ostreolysin A and anthrolysin O use different mechanisms to control movement of cholesterol from the plasma membrane to the endoplasmic reticulum.
    Johnson KA; Endapally S; Vazquez DC; Infante RE; Radhakrishnan A
    J Biol Chem; 2019 Nov; 294(46):17289-17300. PubMed ID: 31597703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic cholesterol depletion hinders cell-surface trafficking of the nicotinic acetylcholine receptor.
    Pediconi MF; Gallegos CE; De Los Santos EB; Barrantes FJ
    Neuroscience; 2004; 128(2):239-49. PubMed ID: 15350637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Movement of accessible plasma membrane cholesterol by the GRAMD1 lipid transfer protein complex.
    Naito T; Ercan B; Krshnan L; Triebl A; Koh DHZ; Wei FY; Tomizawa K; Torta FT; Wenk MR; Saheki Y
    Elife; 2019 Nov; 8():. PubMed ID: 31724953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of a fluorescence-based high-throughput assay for the measurement of neurotransmitter transporter uptake activity.
    Jørgensen S; Nielsen EØ; Peters D; Dyhring T
    J Neurosci Methods; 2008 Mar; 169(1):168-76. PubMed ID: 18222006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association of autophagy with cholesterol-accumulated compartments in Niemann-Pick disease type C cells.
    Ishibashi S; Yamazaki T; Okamoto K
    J Clin Neurosci; 2009 Jul; 16(7):954-9. PubMed ID: 19342246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Niemann-Pick type C1 protein in intracellular trafficking of low density lipoprotein-derived cholesterol.
    Cruz JC; Sugii S; Yu C; Chang TY
    J Biol Chem; 2000 Feb; 275(6):4013-21. PubMed ID: 10660558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Measurement of Cholesterol in Cell Populations Using Flow Cytometry and Fluorescent Perfringolysin O.
    Li J; Lee PL; Pfeffer SR
    Methods Mol Biol; 2017; 1583():85-95. PubMed ID: 28205169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated high content screening for phosphoinositide 3 kinase inhibition using an AKT 1 redistribution assay.
    Wolff M; Haasen D; Merk S; Kroner M; Maier U; Bordel S; Wiedenmann J; Nienhaus GU; Valler M; Heilker R
    Comb Chem High Throughput Screen; 2006 Jun; 9(5):339-50. PubMed ID: 16787147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-content screen for modifiers of Niemann-Pick type C disease in patient cells.
    Pugach EK; Feltes M; Kaufman RJ; Ory DS; Bang AG
    Hum Mol Genet; 2018 Jun; 27(12):2101-2112. PubMed ID: 29659804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of cholesterol from the endoplasmic reticulum to the plasma membrane.
    Kaplan MR; Simoni RD
    J Cell Biol; 1985 Aug; 101(2):446-53. PubMed ID: 4040520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.