These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 21862854)

  • 1. X-ray tomography of morphological changes after freeze/thaw in gas diffusion layers.
    Je J; Kim J; Kaviany M; Son SY; Kim M
    J Synchrotron Radiat; 2011 Sep; 18(Pt 5):743-6. PubMed ID: 21862854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative visualization of a gas diffusion layer in a polymer electrolyte fuel cell using synchrotron X-ray imaging techniques.
    Kim SG; Lee SJ
    J Synchrotron Radiat; 2013 Mar; 20(Pt 2):286-92. PubMed ID: 23412485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ observation of water distribution and behaviour in a polymer electrolyte fuel cell by synchrotron X-ray imaging.
    Mukaide T; Mogi S; Yamamoto J; Morita A; Koji S; Takada K; Uesugi K; Kajiwara K; Noma T
    J Synchrotron Radiat; 2008 Jul; 15(Pt 4):329-34. PubMed ID: 18552423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Colony size spectra of 60Co-gamma-irridiated CHO fibroblasts following freeze and thaw cycles].
    Töllner D; Nachtegal H; Hagemann G; Deinhardt J
    Strahlentherapie; 1975 May; 149(5):520-7. PubMed ID: 1171541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Freeze⁻Thaw Thermal Cycles on the Mechanical Degradation of the Gas Diffusion Layer in Polymer Electrolyte Membrane Fuel Cells.
    Chen Y; Jiang C; Cho C
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of membrane electrode assembly water content on the performance of a polymer electrolyte membrane fuel cell as investigated by 1H NMR microscopy.
    Feindel KW; Bergens SH; Wasylishen RE
    Phys Chem Chem Phys; 2007 Apr; 9(15):1850-7. PubMed ID: 17415498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of freeze/thaw cycles on the stability of compounds in DMSO.
    Kozikowski BA; Burt TM; Tirey DA; Williams LE; Kuzmak BR; Stanton DT; Morand KL; Nelson SL
    J Biomol Screen; 2003 Apr; 8(2):210-5. PubMed ID: 12844443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freeze-thaw treatment of RBC sludge from a remote mining exploration facility in subarctic Canada.
    Diak J; Ormeci B; Proux C
    Water Sci Technol; 2011; 63(6):1309-13. PubMed ID: 21436572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryosurgery in the treatment of basal cell carcinoma. Assessment of one and two freeze-thaw cycle schedules.
    Mallon E; Dawber R
    Dermatol Surg; 1996 Oct; 22(10):854-8. PubMed ID: 9246168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Products and stability of phosphate reactions with lead under freeze-thaw cycling in simple systems.
    Hafsteinsdóttir EG; White DA; Gore DB; Stark SC
    Environ Pollut; 2011 Dec; 159(12):3496-503. PubMed ID: 21907472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remobilization of residual non-aqueous phase liquid in porous media by freeze-thaw cycles.
    Singh K; Niven RK; Senden TJ; Turner ML; Sheppard AP; Middleton JP; Knackstedt MA
    Environ Sci Technol; 2011 Apr; 45(8):3473-8. PubMed ID: 21438639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of the cell membrane-cytoskeleton complex to osmotic and freeze/thaw stresses.
    Ragoonanan V; Hubel A; Aksan A
    Cryobiology; 2010 Dec; 61(3):335-44. PubMed ID: 21055399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Hydrophobicity Treatment of Gas Diffusion Layers on Ice Crystallization in Polymer Electrolyte Fuel Cells.
    Liu W; Lee J; Manzi-Orezzoli V; Ntalis M; Schmidt TJ; Boillat P
    ACS Appl Mater Interfaces; 2023 Apr; 15(14):17779-17790. PubMed ID: 36999194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of freeze-thaw events on the viability of Cryptosporidium parvum oocysts in soil.
    Kato S; Jenkins MB; Fogarty EA; Bowman DD
    J Parasitol; 2002 Aug; 88(4):718-22. PubMed ID: 12197120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase-contrast X-ray imaging of the gas diffusion layer of fuel cells.
    Takeya S; Yoneyama A; Miyamoto J; Gotoh Y; Ueda K; Hyodo K; Takeda T
    J Synchrotron Radiat; 2010 Nov; 17(6):813-6. PubMed ID: 20975230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new scaleable freeze-thaw technology for bulk protein solutions.
    Shamlou PA; Breen LH; Bell WV; Pollo M; Thomas BA
    Biotechnol Appl Biochem; 2007 Jan; 46(Pt 1):13-26. PubMed ID: 16903838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Freeze-Thaw Cycles on Coal Pore Structure and Gas Emission Characteristics.
    Yuan J; Xia J; Wang Y; Chen M; Chen J
    ACS Omega; 2022 May; 7(18):16087-16096. PubMed ID: 35571841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Impact of Freeze-Thaw Cycles on Epinephrine.
    Beasley H; Ng P; Wheeler A; Smith WR; McIntosh SE
    Wilderness Environ Med; 2015 Dec; 26(4):514-9. PubMed ID: 26001487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pore-scale study of fracture dynamics in rock using X-ray micro-CT under ambient freeze-thaw cycling.
    De Kock T; Boone MA; De Schryver T; Van Stappen J; Derluyn H; Masschaele B; De Schutter G; Cnudde V
    Environ Sci Technol; 2015 Mar; 49(5):2867-74. PubMed ID: 25683464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas Diffusion Layers with Deterministic Structure for High Performance Polymer Electrolyte Fuel Cells.
    Csoklich C; Steim R; Marone F; Schmidt TJ; Büchi FN
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9908-9918. PubMed ID: 33616381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.