BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 21863172)

  • 1. Synthesis of architecturally well-defined nanogels via RAFT polymerization for potential bioapplications.
    An Z; Qiu Q; Liu G
    Chem Commun (Camb); 2011 Dec; 47(46):12424-40. PubMed ID: 21863172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in Amphiphilic Polymer-Oligonucleotide Nanomaterials via Living/Controlled Polymerization Technologies.
    Sun H; Yang L; Thompson MP; Schara S; Cao W; Choi W; Hu Z; Zang N; Tan W; Gianneschi NC
    Bioconjug Chem; 2019 Jul; 30(7):1889-1904. PubMed ID: 30969752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications.
    Sasaki Y; Akiyoshi K
    Chem Rec; 2010 Dec; 10(6):366-76. PubMed ID: 20836092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of hyperbranched polyethylene amphiphiles by chain walking polymerization in tandem with RAFT polymerization and supramolecular self-assembly vesicles.
    Shi X; Zhao Y; Gao H; Zhang L; Zhu F; Wu Q
    Macromol Rapid Commun; 2012 Mar; 33(5):374-9. PubMed ID: 22271614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining RAFT radical polymerization and click/highly efficient coupling chemistries: a powerful strategy for the preparation of novel materials.
    Harvison MA; Lowe AB
    Macromol Rapid Commun; 2011 Jun; 32(11):779-800. PubMed ID: 21509847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gels as functional nanomaterials for biology and medicine.
    Xu B
    Langmuir; 2009 Aug; 25(15):8375-7. PubMed ID: 19453130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RAFT-mediated control of nanogel structure and reactivity: chemical, physical and mechanical properties of monomer-dispersed nanogel compositions.
    Liu J; Stansbury JW
    Dent Mater; 2014 Nov; 30(11):1252-62. PubMed ID: 25205366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesized of glucose-responsive nanogels labeled with fluorescence molecule based on phenylboronic acid by RAFT polymerization.
    Guo Q; Zhang X
    J Biomater Sci Polym Ed; 2019 Jul; 30(10):815-831. PubMed ID: 31044656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large scale fabrication of highly monodispersed rattle-type TiO2@void@SiO2 spheres via synthesis-cum-organization process.
    Wu L; Yu Y; Zhang Y; Li Y; Zhang Y; Zhi J
    J Colloid Interface Sci; 2012 Mar; 369(1):179-83. PubMed ID: 22226617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of glycopolymers by controlled radical polymerization techniques and their applications.
    Vázquez-Dorbatt V; Lee J; Lin EW; Maynard HD
    Chembiochem; 2012 Nov; 13(17):2478-87. PubMed ID: 23132748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanochemical synthesis of advanced nanomaterials for catalytic applications.
    Xu C; De S; Balu AM; Ojeda M; Luque R
    Chem Commun (Camb); 2015 Apr; 51(31):6698-713. PubMed ID: 25713819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradable and nontoxic nanogels as nonviral gene delivery systems.
    Sunasee R; Wattanaarsakit P; Ahmed M; Lollmahomed FB; Narain R
    Bioconjug Chem; 2012 Sep; 23(9):1925-33. PubMed ID: 22931440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of branched polymers under continuous-flow microprocess: an improvement of the control of macromolecular architectures.
    Bally F; Serra CA; Brochon C; Hadziioannou G
    Macromol Rapid Commun; 2011 Nov; 32(22):1820-5. PubMed ID: 21919104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular delivery and anti-cancer effect of self-assembled heparin-Pluronic nanogels with RNase A.
    Choi JH; Jang JY; Joung YK; Kwon MH; Park KD
    J Control Release; 2010 Nov; 147(3):420-7. PubMed ID: 20688114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-pot synthesis of highly folded microparticles by suspension polymerization.
    Zhao T; Qiu D
    Langmuir; 2011 Nov; 27(21):12771-4. PubMed ID: 21967737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of surfactant-free hydroxypropylcellulose nanogel and its dual-responsive properties.
    An D; Zhao D; Li X; Lu X; Qiu G; Shea KJ
    Carbohydr Polym; 2015 Dec; 134():385-9. PubMed ID: 26428138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of fluorescent dye labeled biocompatible polymers via immortal ring-opening polymerization.
    Zhao W; Wang Y; Liu X; Cui D
    Chem Commun (Camb); 2012 May; 48(37):4483-5. PubMed ID: 22460348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Both core- and shell-cross-linked nanogels: photoinduced size change, intraparticle LCST, and interparticle UCST thermal behaviors.
    He J; Yan B; Tremblay L; Zhao Y
    Langmuir; 2011 Jan; 27(1):436-44. PubMed ID: 21141813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers.
    Lu Y; Liu J
    Curr Opin Biotechnol; 2006 Dec; 17(6):580-8. PubMed ID: 17056247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic biology, inspired by synthetic chemistry.
    Malinova V; Nallani M; Meier WP; Sinner EK
    FEBS Lett; 2012 Jul; 586(15):2146-56. PubMed ID: 22698730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.