BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1187 related articles for article (PubMed ID: 21863197)

  • 21. A Comprehensive Review on Zeolite Chemistry for Catalytic Conversion of Biomass/Waste into Green Fuels.
    Qazi UY; Javaid R; Ikhlaq A; Khoja AH; Saleem F
    Molecules; 2022 Dec; 27(23):. PubMed ID: 36500669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemicals from Lignin by Catalytic Fast Pyrolysis, from Product Control to Reaction Mechanism.
    Ma Z; Custodis V; Hemberger P; Bährle C; Vogel F; Jeschk G; van Bokhoven JA
    Chimia (Aarau); 2015; 69(10):597-602. PubMed ID: 26598403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals.
    Morgan HM; Bu Q; Liang J; Liu Y; Mao H; Shi A; Lei H; Ruan R
    Bioresour Technol; 2017 Apr; 230():112-121. PubMed ID: 28167357
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemocatalytic Conversion of Cellulosic Biomass to Methyl Glycolate, Ethylene Glycol, and Ethanol.
    Xu G; Wang A; Pang J; Zhao X; Xu J; Lei N; Wang J; Zheng M; Yin J; Zhang T
    ChemSusChem; 2017 Apr; 10(7):1390-1394. PubMed ID: 28266799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterisation of the products from pyrolysis of residues after acid hydrolysis of Miscanthus.
    Melligan F; Dussan K; Auccaise R; Novotny EH; Leahy JJ; Hayes MH; Kwapinski W
    Bioresour Technol; 2012 Mar; 108():258-63. PubMed ID: 22281143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. One-pot catalytic conversion of cellulose and of woody biomass solids to liquid fuels.
    Matson TD; Barta K; Iretskii AV; Ford PC
    J Am Chem Soc; 2011 Sep; 133(35):14090-7. PubMed ID: 21806029
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biochemical Conversion Processes of Lignocellulosic Biomass to Fuels and Chemicals - A Review.
    Brethauer S; Studer MH
    Chimia (Aarau); 2015; 69(10):572-81. PubMed ID: 26598400
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production.
    Ma R; Xu Y; Zhang X
    ChemSusChem; 2015 Jan; 8(1):24-51. PubMed ID: 25272962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A review on selective production of value-added chemicals via catalytic pyrolysis of lignocellulosic biomass.
    Dai L; Wang Y; Liu Y; He C; Ruan R; Yu Z; Jiang L; Zeng Z; Wu Q
    Sci Total Environ; 2020 Dec; 749():142386. PubMed ID: 33370899
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of hydrocarbon fuels from biomass using catalytic pyrolysis under helium and hydrogen environments.
    Thangalazhy-Gopakumar S; Adhikari S; Gupta RB; Tu M; Taylor S
    Bioresour Technol; 2011 Jun; 102(12):6742-9. PubMed ID: 21530240
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production of light olefins by catalytic conversion of lignocellulosic biomass with HZSM-5 zeolite impregnated with 6wt.% lanthanum.
    Huang W; Gong F; Fan M; Zhai Q; Hong C; Li Q
    Bioresour Technol; 2012 Oct; 121():248-55. PubMed ID: 22858493
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermochemical conversion of microalgal biomass into biofuels: a review.
    Chen WH; Lin BJ; Huang MY; Chang JS
    Bioresour Technol; 2015 May; 184():314-327. PubMed ID: 25479688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. One-pot aldol condensation and hydrodeoxygenation of biomass-derived carbonyl compounds for biodiesel synthesis.
    Faba L; Díaz E; Ordóñez S
    ChemSusChem; 2014 Oct; 7(10):2816-20. PubMed ID: 25088473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Woody biomass: Niche position as a source of sustainable renewable chemicals and energy and kinetics of hot-water extraction/hydrolysis.
    Liu S
    Biotechnol Adv; 2010; 28(5):563-82. PubMed ID: 20493246
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From biomass to advanced bio-fuel by catalytic pyrolysis/hydro-processing: hydrodeoxygenation of bio-oil derived from biomass catalytic pyrolysis.
    Wang Y; He T; Liu K; Wu J; Fang Y
    Bioresour Technol; 2012 Mar; 108():280-4. PubMed ID: 22281148
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-throughput microplate technique for enzymatic hydrolysis of lignocellulosic biomass.
    Chundawat SP; Balan V; Dale BE
    Biotechnol Bioeng; 2008 Apr; 99(6):1281-94. PubMed ID: 18306256
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose.
    Van de Vyver S; Geboers J; Schutyser W; Dusselier M; Eloy P; Dornez E; Seo JW; Courtin CM; Gaigneaux EM; Jacobs PA; Sels BF
    ChemSusChem; 2012 Aug; 5(8):1549-58. PubMed ID: 22730195
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integration of heterogeneous and biochemical catalysis for production of fuels and chemicals from biomass.
    Wheeldon I; Christopher P; Blanch H
    Curr Opin Biotechnol; 2017 Jun; 45():127-135. PubMed ID: 28365403
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gluconic acid from biomass fast pyrolysis oils: specialty chemicals from the thermochemical conversion of biomass.
    Santhanaraj D; Rover MR; Resasco DE; Brown RC; Crossley S
    ChemSusChem; 2014 Nov; 7(11):3132-7. PubMed ID: 25204798
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stabilization of acid-rich bio-oil by catalytic mild hydrotreating.
    Choi W; Jo H; Choi JW; Suh DJ; Lee H; Kim C; Kim KH; Lee KY; Ha JM
    Environ Pollut; 2021 Mar; 272():116180. PubMed ID: 33445152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 60.