BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 21863375)

  • 21. Differentiation and adaptation of natural killer cells for anti-malarial immunity.
    Goodier MR; Wolf AS; Riley EM
    Immunol Rev; 2020 Jan; 293(1):25-37. PubMed ID: 31762040
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kctd9 Deficiency Impairs Natural Killer Cell Development and Effector Function.
    Zhang X; Wang P; Chen T; Yan W; Guan X; Shen G; Luo X; Wan X; Ning Q
    Front Immunol; 2019; 10():744. PubMed ID: 31024568
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel insights on human NK cells' immunological modalities revealed by gene expression profiling.
    Hanna J; Bechtel P; Zhai Y; Youssef F; McLachlan K; Mandelboim O
    J Immunol; 2004 Dec; 173(11):6547-63. PubMed ID: 15557145
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The emerging role of the myeloid Elf-1 like transcription factor in hematopoiesis.
    Lacorazza HD; Nimer SD
    Blood Cells Mol Dis; 2003; 31(3):342-50. PubMed ID: 14636650
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TOX regulates the differentiation of human natural killer cells from hematopoietic stem cells in vitro.
    Yun S; Lee SH; Yoon SR; Kim MS; Piao ZH; Myung PK; Kim TD; Jung H; Choi I
    Immunol Lett; 2011 Apr; 136(1):29-36. PubMed ID: 21126536
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Natural killer cell subsets in man and rodents.
    Inngjerdingen M; Kveberg L; Naper C; Vaage JT
    Tissue Antigens; 2011 Aug; 78(2):81-8. PubMed ID: 21726202
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gene deregulation and chronic activation in natural killer cells deficient in the transcription factor ETS1.
    Ramirez K; Chandler KJ; Spaulding C; Zandi S; Sigvardsson M; Graves BJ; Kee BL
    Immunity; 2012 Jun; 36(6):921-32. PubMed ID: 22608498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Emerging insights into natural killer cells in human peripheral tissues.
    Björkström NK; Ljunggren HG; Michaëlsson J
    Nat Rev Immunol; 2016 Apr; 16(5):310-20. PubMed ID: 27121652
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intrahepatic and peripheral blood phenotypes of natural killer and T cells: differential surface expression of killer cell immunoglobulin-like receptors.
    Podhorzer A; Machicote A; Belén S; Lauferman L; Imventarza O; Montal S; Marciano S; Galdame O; Podesta LG; Fainboim L
    Immunology; 2018 Jun; 154(2):261-273. PubMed ID: 29247515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ex vivo generated natural killer cells acquire typical natural killer receptors and display a cytotoxic gene expression profile similar to peripheral blood natural killer cells.
    Lehmann D; Spanholtz J; Osl M; Tordoir M; Lipnik K; Bilban M; Schlechta B; Dolstra H; Hofer E
    Stem Cells Dev; 2012 Nov; 21(16):2926-38. PubMed ID: 22571679
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome wide transcriptional analysis of resting and IL2 activated human natural killer cells: gene expression signatures indicative of novel molecular signaling pathways.
    Dybkaer K; Iqbal J; Zhou G; Geng H; Xiao L; Schmitz A; d'Amore F; Chan WC
    BMC Genomics; 2007 Jul; 8():230. PubMed ID: 17623099
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cutting edge: the Ets1 transcription factor is required for the development of NK T cells in mice.
    Walunas TL; Wang B; Wang CR; Leiden JM
    J Immunol; 2000 Mar; 164(6):2857-60. PubMed ID: 10706669
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence for discrete stages of human natural killer cell differentiation in vivo.
    Freud AG; Yokohama A; Becknell B; Lee MT; Mao HC; Ferketich AK; Caligiuri MA
    J Exp Med; 2006 Apr; 203(4):1033-43. PubMed ID: 16606675
    [TBL] [Abstract][Full Text] [Related]  

  • 34. What Defines NK Cell Functional Fate: Phenotype or Metabolism?
    Poznanski SM; Ashkar AA
    Front Immunol; 2019; 10():1414. PubMed ID: 31275330
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Murine natural killer cell progenitors and their requirements for development.
    Lian RH; Kumar V
    Semin Immunol; 2002 Dec; 14(6):453-60. PubMed ID: 12457618
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hhex Directly Represses BIM-Dependent Apoptosis to Promote NK Cell Development and Maintenance.
    Goh W; Scheer S; Jackson JT; Hediyeh-Zadeh S; Delconte RB; Schuster IS; Andoniou CE; Rautela J; Degli-Esposti MA; Davis MJ; McCormack MP; Nutt SL; Huntington ND
    Cell Rep; 2020 Oct; 33(3):108285. PubMed ID: 33086067
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The unconventional expression of IL-15 and its role in NK cell homeostasis.
    Huntington ND
    Immunol Cell Biol; 2014 Mar; 92(3):210-3. PubMed ID: 24492800
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcription factor IRF-1 and its family members in the regulation of host defense.
    Taniguchi T; Tanaka N; Ogasawara K; Taki S; Sato M; Takaoka A
    Cold Spring Harb Symp Quant Biol; 1999; 64():465-72. PubMed ID: 11232323
    [No Abstract]   [Full Text] [Related]  

  • 39. Human natural killer cell development.
    Freud AG; Caligiuri MA
    Immunol Rev; 2006 Dec; 214():56-72. PubMed ID: 17100876
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcription factor Runx3 regulates interleukin-15-dependent natural killer cell activation.
    Levanon D; Negreanu V; Lotem J; Bone KR; Brenner O; Leshkowitz D; Groner Y
    Mol Cell Biol; 2014 Mar; 34(6):1158-69. PubMed ID: 24421391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.