BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 21863446)

  • 61. Isolation of chloroplast proteins from Arabidopsis thaliana for proteome analysis.
    van Wijk KJ; Peltier JB; Giacomelli L
    Methods Mol Biol; 2007; 355():43-8. PubMed ID: 17093301
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Purification of Nongreen Plastids (Proplastids and Amyloplasts) from Angiosperms, and Isolation of Their Envelope Membranes.
    Alban C; Journet EP
    Methods Mol Biol; 2018; 1829():145-164. PubMed ID: 29987720
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Plastoglobule Lipid Droplet Isolation from Plant Leaf Tissue and Cyanobacteria.
    Shivaiah KK; Susanto FA; Devadasu E; Lundquist PK
    J Vis Exp; 2022 Oct; (188):. PubMed ID: 36282710
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis.
    Lamkemeyer P; Laxa M; Collin V; Li W; Finkemeier I; Schöttler MA; Holtkamp V; Tognetti VB; Issakidis-Bourguet E; Kandlbinder A; Weis E; Miginiac-Maslow M; Dietz KJ
    Plant J; 2006 Mar; 45(6):968-81. PubMed ID: 16507087
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Chloroplast phenomics: systematic phenotypic screening of chloroplast protein mutants in Arabidopsis.
    Lu Y; Savage LJ; Last RL
    Methods Mol Biol; 2011; 775():161-85. PubMed ID: 21863443
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Isolation of leaf peroxisomes from Arabidopsis for organelle proteome analyses.
    Reumann S; Singhal R
    Methods Mol Biol; 2014; 1072():541-52. PubMed ID: 24136545
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Plant cells without detectable plastids are generated in the crumpled leaf mutant of Arabidopsis thaliana.
    Chen Y; Asano T; Fujiwara MT; Yoshida S; Machida Y; Yoshioka Y
    Plant Cell Physiol; 2009 May; 50(5):956-69. PubMed ID: 19318374
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Metabolic labeling and membrane fractionation for comparative proteomic analysis of Arabidopsis thaliana suspension cell cultures.
    Szymanski WG; Kierszniowska S; Schulze WX
    J Vis Exp; 2013 Sep; (79):e50535. PubMed ID: 24121251
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A mutation of the CRUMPLED LEAF gene that encodes a protein localized in the outer envelope membrane of plastids affects the pattern of cell division, cell differentiation, and plastid division in Arabidopsis.
    Asano T; Yoshioka Y; Kurei S; Sakamoto W; Machida Y;
    Plant J; 2004 May; 38(3):448-59. PubMed ID: 15086805
    [TBL] [Abstract][Full Text] [Related]  

  • 70. One- and two-dimensional blue native-PAGE and immunodetection of low-abundance chloroplast membrane protein complexes.
    Kikuchi S; Bédard J; Nakai M
    Methods Mol Biol; 2011; 775():3-17. PubMed ID: 21863435
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A mutation in the Arabidopsis mTERF-related plastid protein SOLDAT10 activates retrograde signaling and suppresses (1)O(2)-induced cell death.
    Meskauskiene R; Würsch M; Laloi C; Vidi PA; Coll NS; Kessler F; Baruah A; Kim C; Apel K
    Plant J; 2009 Nov; 60(3):399-410. PubMed ID: 19563435
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles.
    Vidi PA; Kanwischer M; Baginsky S; Austin JR; Csucs G; Dörmann P; Kessler F; Bréhélin C
    J Biol Chem; 2006 Apr; 281(16):11225-34. PubMed ID: 16414959
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Visualization of plastids in pollen grains: involvement of FtsZ1 in pollen plastid division.
    Tang LY; Nagata N; Matsushima R; Chen Y; Yoshioka Y; Sakamoto W
    Plant Cell Physiol; 2009 Apr; 50(4):904-8. PubMed ID: 19282372
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A reciprocal 15N-labeling proteomic analysis of expanding Arabidopsis leaves subjected to osmotic stress indicates importance of mitochondria in preserving plastid functions.
    Skirycz A; Memmi S; De Bodt S; Maleux K; Obata T; Fernie AR; Devreese B; Inzé D
    J Proteome Res; 2011 Mar; 10(3):1018-29. PubMed ID: 21142212
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Rapid isolation of intact chloroplasts from spinach leaves.
    Joly D; Carpentier R
    Methods Mol Biol; 2011; 684():321-5. PubMed ID: 20960139
    [TBL] [Abstract][Full Text] [Related]  

  • 76. More than just lipid balls: quantitative analysis of plastoglobule attributes and their stress-related responses.
    Arzac MI; Fernández-Marín B; García-Plazaola JI
    Planta; 2022 Feb; 255(3):62. PubMed ID: 35141783
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Starch synthase 4 is located in the thylakoid membrane and interacts with plastoglobule-associated proteins in Arabidopsis.
    Gámez-Arjona FM; Raynaud S; Ragel P; Mérida A
    Plant J; 2014 Oct; 80(2):305-16. PubMed ID: 25088399
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Plastid in vitro transcription.
    Tiller K; Link G
    Methods Mol Biol; 1995; 37():121-33. PubMed ID: 7780501
    [No Abstract]   [Full Text] [Related]  

  • 79. Isolation of Plastid Fractions from the Diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum.
    Schober AF; Flori S; Finazzi G; Kroth PG; Bártulos CR
    Methods Mol Biol; 2018; 1829():189-203. PubMed ID: 29987723
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Stromules and the dynamic nature of plastid morphology.
    Kwok EY; Hanson MR
    J Microsc; 2004 May; 214(Pt 2):124-37. PubMed ID: 15102061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.