BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 21863479)

  • 1. Saccharomyces cerevisiae: gene annotation and genome variability, state of the art through comparative genomics.
    Louis E
    Methods Mol Biol; 2011; 759():31-40. PubMed ID: 21863479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A pipeline for automated annotation of yeast genome sequences by a conserved-synteny approach.
    Proux-Wéra E; Armisén D; Byrne KP; Wolfe KH
    BMC Bioinformatics; 2012 Sep; 13():237. PubMed ID: 22984983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of new alternative reference strain genome sequences into the Saccharomyces genome database.
    Song G; Balakrishnan R; Binkley G; Costanzo MC; Dalusag K; Demeter J; Engel S; Hellerstedt ST; Karra K; Hitz BC; Nash RS; Paskov K; Sheppard T; Skrzypek M; Weng S; Wong E; Michael Cherry J
    Database (Oxford); 2016; 2016():. PubMed ID: 27252399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The new modern era of yeast genomics: community sequencing and the resulting annotation of multiple Saccharomyces cerevisiae strains at the Saccharomyces Genome Database.
    Engel SR; Cherry JM
    Database (Oxford); 2013; 2013():bat012. PubMed ID: 23487186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary genomics of transposable elements in Saccharomyces cerevisiae.
    Carr M; Bensasson D; Bergman CM
    PLoS One; 2012; 7(11):e50978. PubMed ID: 23226439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CodingQuarry: highly accurate hidden Markov model gene prediction in fungal genomes using RNA-seq transcripts.
    Testa AC; Hane JK; Ellwood SR; Oliver RP
    BMC Genomics; 2015 Mar; 16(1):170. PubMed ID: 25887563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinvestigation of the Saccharomyces cerevisiae genome annotation by comparison to the genome of a related fungus: Ashbya gossypii.
    Brachat S; Dietrich FS; Voegeli S; Zhang Z; Stuart L; Lerch A; Gates K; Gaffney T; Philippsen P
    Genome Biol; 2003; 4(7):R45. PubMed ID: 12844361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome sequencing and genetic breeding of a bioethanol Saccharomyces cerevisiae strain YJS329.
    Zheng DQ; Wang PM; Chen J; Zhang K; Liu TZ; Wu XC; Li YD; Zhao YH
    BMC Genomics; 2012 Sep; 13():479. PubMed ID: 22978491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Annotation of 2,507
    Wang M; Li X; Liu X; Hou X; He Y; Yu J-H; Hu S; Yin H; Xie B-B
    Microbiol Spectr; 2024 Apr; 12(4):e0358223. PubMed ID: 38488392
    [No Abstract]   [Full Text] [Related]  

  • 10. Implementation and assessment of a yeast orphan gene research project: involving undergraduates in authentic research experiences and progressing our understanding of uncharacterized open reading frames.
    Bowling BV; Schultheis PJ; Strome ED
    Yeast; 2016 Feb; 33(2):43-53. PubMed ID: 26460164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide metabolic re-annotation of Ashbya gossypii: new insights into its metabolism through a comparative analysis with Saccharomyces cerevisiae and Kluyveromyces lactis.
    Gomes D; Aguiar TQ; Dias O; Ferreira EC; Domingues L; Rocha I
    BMC Genomics; 2014 Sep; 15(1):810. PubMed ID: 25253284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Re-annotation of protein-coding genes in the genome of saccharomyces cerevisiae based on support vector machines.
    Lin D; Yin X; Wang X; Zhou P; Guo FB
    PLoS One; 2013; 8(7):e64477. PubMed ID: 23874379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Filling annotation gaps in yeast genomes using genome-wide contact maps.
    Marie-Nelly H; Marbouty M; Cournac A; Liti G; Fischer G; Zimmer C; Koszul R
    Bioinformatics; 2014 Aug; 30(15):2105-13. PubMed ID: 24711652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae.
    Borneman AR; Desany BA; Riches D; Affourtit JP; Forgan AH; Pretorius IS; Egholm M; Chambers PJ
    PLoS Genet; 2011 Feb; 7(2):e1001287. PubMed ID: 21304888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative genomics reveals long, evolutionarily conserved, low-complexity islands in yeast proteins.
    Romov PA; Li F; Lipke PN; Epstein SL; Qiu WG
    J Mol Evol; 2006 Sep; 63(3):415-25. PubMed ID: 16927006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative genomics of wild type yeast strains unveils important genome diversity.
    Carreto L; Eiriz MF; Gomes AC; Pereira PM; Schuller D; Santos MA
    BMC Genomics; 2008 Nov; 9():524. PubMed ID: 18983662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OrthoFiller: utilising data from multiple species to improve the completeness of genome annotations.
    Dunne MP; Kelly S
    BMC Genomics; 2017 May; 18(1):390. PubMed ID: 28521726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome Sequence and Analysis of a Stress-Tolerant, Wild-Derived Strain of Saccharomyces cerevisiae Used in Biofuels Research.
    McIlwain SJ; Peris D; Sardi M; Moskvin OV; Zhan F; Myers KS; Riley NM; Buzzell A; Parreiras LS; Ong IM; Landick R; Coon JJ; Gasch AP; Sato TK; Hittinger CT
    G3 (Bethesda); 2016 Jun; 6(6):1757-66. PubMed ID: 27172212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Definitive demonstration by synthesis of genome annotation completeness.
    Jaschke PR; Dotson GA; Hung KS; Liu D; Endy D
    Proc Natl Acad Sci U S A; 2019 Nov; 116(48):24206-24213. PubMed ID: 31719208
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 18.