BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 21863659)

  • 1. Prediction of oxygen distribution in aortic valve leaflet considering diffusion and convection.
    Wang L; Korossis S; Fisher J; Ingham E; Jin Z
    J Heart Valve Dis; 2011 Jul; 20(4):442-8. PubMed ID: 21863659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational simulation of oxygen diffusion in aortic valve leaflet for tissue engineering applications.
    Wang L; Korossis S; Ingham E; Fisher J; Jin Z
    J Heart Valve Dis; 2008 Nov; 17(6):700-9. PubMed ID: 19137804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A coupled fluid-structure finite element model of the aortic valve and root.
    Nicosia MA; Cochran RP; Einstein DR; Rutland CJ; Kunzelman KS
    J Heart Valve Dis; 2003 Nov; 12(6):781-9. PubMed ID: 14658821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational modeling of combined cell population dynamics and oxygen transport in engineered tissue subject to interstitial perfusion.
    Galbusera F; Cioffi M; Raimondi MT; Pietrabissa R
    Comput Methods Biomech Biomed Engin; 2007 Aug; 10(4):279-87. PubMed ID: 17671861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related changes in the aortic valve affect leaflet stress distributions: implications for aortic valve degeneration.
    Singh R; Strom JA; Ondrovic L; Joseph B; VanAuker MD
    J Heart Valve Dis; 2008 May; 17(3):290-8; discussion 299. PubMed ID: 18592926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic impact stress analysis of a bileaflet mechanical heart valve.
    Yuan Q; Xu L; Ngoi BK; Yeo TJ; Hwang NH
    J Heart Valve Dis; 2003 Jan; 12(1):102-9. PubMed ID: 12578344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.
    Mohammadi H; Bahramian F; Wan W
    Med Eng Phys; 2009 Nov; 31(9):1110-7. PubMed ID: 19773193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue engineering of cardiac valve prostheses II: biomechanical characterization of decellularized porcine aortic heart valves.
    Korossis SA; Booth C; Wilcox HE; Watterson KG; Kearney JN; Fisher J; Ingham E
    J Heart Valve Dis; 2002 Jul; 11(4):463-71. PubMed ID: 12150291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors influencing the oxygen consumption rate of aortic valve interstitial cells: application to tissue engineering.
    Wang L; Wilshaw SP; Korossis S; Fisher J; Jin Z; Ingham E
    Tissue Eng Part C Methods; 2009 Sep; 15(3):355-63. PubMed ID: 19719392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational fluid dynamics study of a protruded-hinge bileaflet mechanical heart valve.
    Wang J; Yao H; Lim CJ; Zhao Y; Yeo TJ; Hwang NH
    J Heart Valve Dis; 2001 Mar; 10(2):254-262; discussion 263. PubMed ID: 11297213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling leaflet correction techniques in aortic valve repair: A finite element study.
    Labrosse MR; Boodhwani M; Sohmer B; Beller CJ
    J Biomech; 2011 Aug; 44(12):2292-8. PubMed ID: 21683361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flat or curved pericardial aortic valve cusps: a finite element study.
    Lim KH; Candra J; Yeo JH; Duran CM
    J Heart Valve Dis; 2004 Sep; 13(5):792-7. PubMed ID: 15473482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional coupled fluid-structure simulation of pericardial bioprosthetic aortic valve function.
    Makhijani VB; Yang HQ; Dionne PJ; Thubrikar MJ
    ASAIO J; 1997; 43(5):M387-92. PubMed ID: 9360067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of finite element analysis to the design of tissue leaflets for a percutaneous aortic valve.
    Smuts AN; Blaine DC; Scheffer C; Weich H; Doubell AF; Dellimore KH
    J Mech Behav Biomed Mater; 2011 Jan; 4(1):85-98. PubMed ID: 21094482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-vitro assessment of the functional performance of the decellularized intact porcine aortic root.
    Korossis SA; Wilcox HE; Watterson KG; Kearney JN; Ingham E; Fisher J
    J Heart Valve Dis; 2005 May; 14(3):408-21; discussion 422. PubMed ID: 15974537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: measurement and modeling.
    Malda J; Rouwkema J; Martens DE; Le Comte EP; Kooy FK; Tramper J; van Blitterswijk CA; Riesle J
    Biotechnol Bioeng; 2004 Apr; 86(1):9-18. PubMed ID: 15007836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen diffusion and consumption of aortic valve cusps.
    Weind KL; Boughner DR; Rigutto L; Ellis CG
    Am J Physiol Heart Circ Physiol; 2001 Dec; 281(6):H2604-11. PubMed ID: 11709429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational fluid dynamics simulation of transcatheter aortic valve degeneration.
    Dwyer HA; Matthews PB; Azadani A; Jaussaud N; Ge L; Guy TS; Tseng EE
    Interact Cardiovasc Thorac Surg; 2009 Aug; 9(2):301-8. PubMed ID: 19414489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical implications of the congenital bicuspid aortic valve: a finite element study of aortic root function from in vivo data.
    Conti CA; Della Corte A; Votta E; Del Viscovo L; Bancone C; De Santo LS; Redaelli A
    J Thorac Cardiovasc Surg; 2010 Oct; 140(4):890-6, 896.e1-2. PubMed ID: 20363481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen supply to contracting skeletal muscle at the microcirculatory level: diffusion vs. convection.
    Pittman RN
    Acta Physiol Scand; 2000 Apr; 168(4):593-602. PubMed ID: 10759595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.