These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 21863803)

  • 1. Enhanced mechanical rigidity of hydrogels formed from enantiomeric peptide assemblies.
    Nagy KJ; Giano MC; Jin A; Pochan DJ; Schneider JP
    J Am Chem Soc; 2011 Sep; 133(38):14975-7. PubMed ID: 21863803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling supramolecular filament chirality of hydrogel by co-assembly of enantiomeric aromatic peptides.
    Yang X; Lu H; Tao Y; Zhang H; Wang H
    J Nanobiotechnology; 2022 Feb; 20(1):77. PubMed ID: 35144637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A self-assembled peptidic nanomillipede to fabricate a tuneable hybrid hydrogel.
    Liu J; Ni R; Chau Y
    Chem Commun (Camb); 2019 Jun; 55(49):7093-7096. PubMed ID: 31155632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo design of strand-swapped beta-hairpin hydrogels.
    Nagarkar RP; Hule RA; Pochan DJ; Schneider JP
    J Am Chem Soc; 2008 Apr; 130(13):4466-74. PubMed ID: 18335936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the gelation ability of racemic mixture by melamine: enhanced mechanical rigidity and tunable nanoscale chirality.
    Shen Z; Wang T; Liu M
    Langmuir; 2014 Sep; 30(35):10772-8. PubMed ID: 25136742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chirality-directed hydrogel assembly and interactions with enantiomers of an active pharmaceutical ingredient.
    Patterson AK; El-Qarra LH; Smith DK
    Chem Commun (Camb); 2022 Mar; 58(24):3941-3944. PubMed ID: 35244630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chirality effects at each amino acid position on tripeptide self-assembly into hydrogel biomaterials.
    Marchesan S; Easton CD; Styan KE; Waddington LJ; Kushkaki F; Goodall L; McLean KM; Forsythe JS; Hartley PG
    Nanoscale; 2014 May; 6(10):5172-80. PubMed ID: 24700146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Branched peptides integrate into self-assembled nanostructures and enhance biomechanics of peptidic hydrogels.
    Pugliese R; Fontana F; Marchini A; Gelain F
    Acta Biomater; 2018 Jan; 66():258-271. PubMed ID: 29128535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Healing, Self-Assembled β-Sheet Peptide-Poly(γ-glutamic acid) Hybrid Hydrogels.
    Clarke DE; Pashuck ET; Bertazzo S; Weaver JVM; Stevens MM
    J Am Chem Soc; 2017 May; 139(21):7250-7255. PubMed ID: 28525280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of self-assembling peptide hydrogelators amenable to bacterial expression.
    Sonmez C; Nagy KJ; Schneider JP
    Biomaterials; 2015 Jan; 37():62-72. PubMed ID: 25453938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning gelation kinetics and mechanical rigidity of β-hairpin peptide hydrogels via hydrophobic amino acid substitutions.
    Chen C; Gu Y; Deng L; Han S; Sun X; Chen Y; Lu JR; Xu H
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14360-8. PubMed ID: 25087842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photo-cross-linking approach to engineering small tyrosine-containing peptide hydrogels with enhanced mechanical stability.
    Ding Y; Li Y; Qin M; Cao Y; Wang W
    Langmuir; 2013 Oct; 29(43):13299-306. PubMed ID: 24090141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A self-assembled peptide hydrogel for cytokine sequestration.
    Kim KK; Siddiqui Z; Patel M; Sarkar B; Kumar VA
    J Mater Chem B; 2020 Feb; 8(5):945-950. PubMed ID: 31919489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the importance of lateral hydrophobic association in self-assembling peptide hydrogelators.
    Rajagopal K; Ozbas B; Pochan DJ; Schneider JP
    Eur Biophys J; 2006 Jan; 35(2):162-9. PubMed ID: 16283291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular, Local, and Network-Level Basis for the Enhanced Stiffness of Hydrogel Networks Formed from Coassembled Racemic Peptides: Predictions from Pauling and Corey.
    Nagy-Smith K; Beltramo PJ; Moore E; Tycko R; Furst EM; Schneider JP
    ACS Cent Sci; 2017 Jun; 3(6):586-597. PubMed ID: 28691070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembling multidomain peptide hydrogels: designed susceptibility to enzymatic cleavage allows enhanced cell migration and spreading.
    Galler KM; Aulisa L; Regan KR; D'Souza RN; Hartgerink JD
    J Am Chem Soc; 2010 Mar; 132(9):3217-23. PubMed ID: 20158218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide-functionalized oxime hydrogels with tunable mechanical properties and gelation behavior.
    Lin F; Yu J; Tang W; Zheng J; Defante A; Guo K; Wesdemiotis C; Becker ML
    Biomacromolecules; 2013 Oct; 14(10):3749-58. PubMed ID: 24050500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the Mechanical Rigidity of Hyaluronic Acid by Integration of a Supramolecular Peptide Matrix.
    Aviv M; Halperin-Sternfeld M; Grigoriants I; Buzhansky L; Mironi-Harpaz I; Seliktar D; Einav S; Nevo Z; Adler-Abramovich L
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):41883-41891. PubMed ID: 30211538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformation-Directed Formation of Self-Healing Diblock Copolypeptide Hydrogels via Polyion Complexation.
    Sun Y; Wollenberg AL; O'Shea TM; Cui Y; Zhou ZH; Sofroniew MV; Deming TJ
    J Am Chem Soc; 2017 Oct; 139(42):15114-15121. PubMed ID: 28976744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchically structured hydrogels utilizing multifunctional assembling peptides for 3D cell culture.
    Hilderbrand AM; Ford EM; Guo C; Sloppy JD; Kloxin AM
    Biomater Sci; 2020 Mar; 8(5):1256-1269. PubMed ID: 31854388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.