These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 21863810)

  • 41. Selection and characterization of DNA aptamers against VEGF165 with aptamer blotting method and its application.
    Ikebukuro K; Hasegawa H; Sode K
    Nucleic Acids Symp Ser (Oxf); 2007; (51):399-400. PubMed ID: 18029755
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Triggered polycatenated DNA scaffolds for DNA sensors and aptasensors by a combination of rolling circle amplification and DNAzyme amplification.
    Bi S; Li L; Zhang S
    Anal Chem; 2010 Nov; 82(22):9447-54. PubMed ID: 20954711
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mapping of the functional phosphate groups in the catalytic core of deoxyribozyme 10-23.
    Nawrot B; Widera K; Wojcik M; Rebowska B; Nowak G; Stec WJ
    FEBS J; 2007 Feb; 274(4):1062-72. PubMed ID: 17250742
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Non-SELEX selection of aptamers.
    Berezovski M; Musheev M; Drabovich A; Krylov SN
    J Am Chem Soc; 2006 Feb; 128(5):1410-1. PubMed ID: 16448086
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A modular tyrosine kinase deoxyribozyme with discrete aptamer and catalyst domains.
    Dokukin V; Silverman SK
    Chem Commun (Camb); 2014 Aug; 50(66):9317-20. PubMed ID: 25000337
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural basis for recognition of Co2+ by RNA aptamers.
    Wrzesinski J; Jóźwiakowski SK
    FEBS J; 2008 Apr; 275(8):1651-62. PubMed ID: 18312410
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In vitro selection of protein-binding DNA aptamers as ligands for biosensing applications.
    Navani NK; Mok WK; Yingfu L
    Methods Mol Biol; 2009; 504():399-415. PubMed ID: 19159108
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An ultrasensitive peroxidase DNAzyme-associated aptasensor that utilizes a target-triggered enzymatic signal amplification strategy.
    Fu R; Jeon K; Jung C; Park HG
    Chem Commun (Camb); 2011 Sep; 47(35):9876-8. PubMed ID: 21826311
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Selection of aptamers for a non-DNA binding protein in the context of cell lysate.
    Kanoatov M; Javaherian S; Krylov SN
    Anal Chim Acta; 2010 Nov; 681(1-2):92-7. PubMed ID: 21035608
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Screening and characterization of DNA aptamers with hTNF-alpha binding and neutralizing activity].
    Guo KT; Yan XR; Huang GJ; Xu CX; Chai YS; Zhang ZQ
    Sheng Wu Gong Cheng Xue Bao; 2003 Nov; 19(6):730-3. PubMed ID: 15971588
    [TBL] [Abstract][Full Text] [Related]  

  • 51. DNA aptamer-mediated regulation of the hairpin ribozyme by human alpha-thrombin.
    Najafi-Shoushtari SH; Famulok M
    Blood Cells Mol Dis; 2007; 38(1):19-24. PubMed ID: 17150386
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adenosine is inherently favored as the branch-site RNA nucleotide in a structural context that resembles natural RNA splicing.
    Zelin E; Wang Y; Silverman SK
    Biochemistry; 2006 Mar; 45(9):2767-71. PubMed ID: 16503631
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Proteins modified with DNAzymes or aptamers act as biosensors or biosensor labels.
    Shlyahovsky B; Li D; Katz E; Willner I
    Biosens Bioelectron; 2007 May; 22(11):2570-6. PubMed ID: 17098412
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evolution of high-branching deoxyribozymes from a catalytic DNA with a three-way junction.
    Chiuman W; Li Y
    Chem Biol; 2006 Oct; 13(10):1061-9. PubMed ID: 17052610
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Smart nanomaterials inspired by biology: dynamic assembly of error-free nanomaterials in response to multiple chemical and biological stimuli.
    Lu Y; Liu J
    Acc Chem Res; 2007 May; 40(5):315-23. PubMed ID: 17474707
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of non-8-17 sequences uncovers structurally diverse RNA-cleaving deoxyribozymes.
    Lam JC; Kwan SO; Li Y
    Mol Biosyst; 2011 Jul; 7(7):2139-46. PubMed ID: 21523306
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of a catalytically efficient acidic RNA-cleaving deoxyribozyme.
    Kandadai SA; Li Y
    Nucleic Acids Res; 2005; 33(22):7164-75. PubMed ID: 16391005
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Selection of a DNA aptamer that binds 8-OHdG using GMP-agarose.
    Miyachi Y; Shimizu N; Ogino C; Fukuda H; Kondo A
    Bioorg Med Chem Lett; 2009 Jul; 19(13):3619-22. PubMed ID: 19450981
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of ribozyme structure and function by nucleotide analog interference mapping.
    Basu S; Pazsint C; Chowdhury G
    Methods Mol Biol; 2004; 252():57-75. PubMed ID: 15017043
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The use of light to investigate and modulate DNA and RNA conformations.
    Sen D
    Nucleic Acids Symp Ser (Oxf); 2008; (52):11-2. PubMed ID: 18776228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.