These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 21863869)
1. Hydride-induced amplification of performance and binding enthalpies in chromium hydrazide gels for Kubas-type hydrogen storage. Hamaed A; Hoang TK; Moula G; Aroca R; Trudeau ML; Antonelli DM J Am Chem Soc; 2011 Oct; 133(39):15434-43. PubMed ID: 21863869 [TBL] [Abstract][Full Text] [Related]
2. Design and synthesis of vanadium hydrazide gels for Kubas-type hydrogen adsorption: a new class of hydrogen storage materials. Hoang TK; Webb MI; Mai HV; Hamaed A; Walsby CJ; Trudeau M; Antonelli DM J Am Chem Soc; 2010 Aug; 132(33):11792-8. PubMed ID: 20681605 [TBL] [Abstract][Full Text] [Related]
3. Transition metal hydrazide-based hydrogen-storage materials: the first atoms-in-molecules analysis of the Kubas interaction. Skipper CV; Hoang TK; Antonelli DM; Kaltsoyannis N Chemistry; 2012 Feb; 18(6):1750-60. PubMed ID: 22238205 [TBL] [Abstract][Full Text] [Related]
6. H2 storage materials (22 KJ/mol) using organometallic Ti fragments as sigma-H2 binding sites. Hamaed A; Trudeau M; Antonelli DM J Am Chem Soc; 2008 Jun; 130(22):6992-9. PubMed ID: 18461937 [TBL] [Abstract][Full Text] [Related]
7. Kubas-type hydrogen storage in V(III) polymers using tri- and tetradentate bridging ligands. Hoang TK; Hamaed A; Moula G; Aroca R; Trudeau M; Antonelli DM J Am Chem Soc; 2011 Apr; 133(13):4955-64. PubMed ID: 21391675 [TBL] [Abstract][Full Text] [Related]
8. The Kubas interaction in M(II) (M = Ti, V, Cr) hydrazine-based hydrogen storage materials: a DFT study. Skipper CV; Hamaed A; Antonelli DM; Kaltsoyannis N Dalton Trans; 2012 Jul; 41(28):8515-23. PubMed ID: 22555760 [TBL] [Abstract][Full Text] [Related]
9. High-Pressure Raman and Calorimetry Studies of Vanadium(III) Alkyl Hydrides for Kubas-Type Hydrogen Storage. Morris L; Trudeau ML; Reed D; Book D; Antonelli DM Chemphyschem; 2016 Mar; 17(6):822-8. PubMed ID: 26762590 [TBL] [Abstract][Full Text] [Related]
10. Ternary MgTiX-alloys: a promising route towards low-temperature, high-capacity, hydrogen-storage materials. Vermeulen P; van Thiel EF; Notten PH Chemistry; 2007; 13(35):9892-8. PubMed ID: 17879246 [TBL] [Abstract][Full Text] [Related]
11. Computational study of silica-supported transition metal fragments for Kubas-type hydrogen storage. Skipper CV; Hamaed A; Antonelli DM; Kaltsoyannis N J Am Chem Soc; 2010 Dec; 132(48):17296-305. PubMed ID: 21077628 [TBL] [Abstract][Full Text] [Related]
12. Surface interactions and quantum kinetic molecular sieving for H2 and D2 adsorption on a mixed metal-organic framework material. Chen B; Zhao X; Putkham A; Hong K; Lobkovsky EB; Hurtado EJ; Fletcher AJ; Thomas KM J Am Chem Soc; 2008 May; 130(20):6411-23. PubMed ID: 18435535 [TBL] [Abstract][Full Text] [Related]
13. Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage. Alapati SV; Karl Johnson J; Sholl DS Phys Chem Chem Phys; 2007 Mar; 9(12):1438-52. PubMed ID: 17356751 [TBL] [Abstract][Full Text] [Related]
14. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials. Thomas KM Dalton Trans; 2009 Mar; (9):1487-505. PubMed ID: 19421589 [TBL] [Abstract][Full Text] [Related]
15. High performance hydrogen storage from Be-BTB metal-organic framework at room temperature. Lim WX; Thornton AW; Hill AJ; Cox BJ; Hill JM; Hill MR Langmuir; 2013 Jul; 29(27):8524-33. PubMed ID: 23805913 [TBL] [Abstract][Full Text] [Related]