These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 21864088)

  • 1. Comments regarding the binary power law for heterogeneity of disease incidence.
    Turechek WW; Madden LV; Gent DH; Xu XM
    Phytopathology; 2011 Dec; 101(12):1396-407. PubMed ID: 21864088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Twenty-Five Years of the Binary Power Law for Characterizing Heterogeneity of Disease Incidence.
    Madden LV; Hughes G; Moraes WB; Xu XM; Turechek WW
    Phytopathology; 2018 Jun; 108(6):656-680. PubMed ID: 29148964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of quadrat size and shape, initial epidemic conditions, and spore dispersal gradient on spatial statistics of plant disease epidemics.
    Xu XM; Ridout MS
    Phytopathology; 2000 Jul; 90(7):738-50. PubMed ID: 18944493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial and temporal stability of the estimated parameters of the binary power law.
    Gent DH; Turechek WW; Mahaffee WF
    Phytopathology; 2008 Oct; 98(10):1107-17. PubMed ID: 18943457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficiency of adaptive cluster sampling for estimating plant disease incidence.
    Ojiambo PS; Scherm H
    Phytopathology; 2010 Jul; 100(7):663-70. PubMed ID: 20528184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of initial epidemic conditions, sporulation rate, and spore dispersal gradient on the spatio-temporal dynamics of plant disease epidemics.
    Xu XM; Ridout MS
    Phytopathology; 1998 Oct; 88(10):1000-12. PubMed ID: 18944811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Meta-Analytical Assessment of the Aggregation Parameter of the Binary Power Law for Characterizing Spatial Heterogeneity of Plant Disease Incidence.
    Madden LV; Moraes WB; Hughes G; Xu X
    Phytopathology; 2021 Nov; 111(11):1983-1993. PubMed ID: 33769833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sampling for plant disease incidence.
    Madden LV; Hughes G
    Phytopathology; 1999 Nov; 89(11):1088-103. PubMed ID: 18944667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cascade: an epidemiological model to simulate disease spread and aggregation across multiple scales in a spatial hierarchy.
    Gosme M; Lucas P
    Phytopathology; 2009 Jul; 99(7):823-32. PubMed ID: 19522580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial pattern analysis of hop powdery mildew in the pacific northwest: implications for sampling.
    Turechek WW; Mahaffee WF
    Phytopathology; 2004 Oct; 94(10):1116-28. PubMed ID: 18943801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The explicit dependence of quadrat variance on the ratio of clump size to quadrat size.
    Ferrandino FJ
    Phytopathology; 2005 May; 95(5):452-62. PubMed ID: 18943309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal analysis of spread of infections by Verticillium dahliae pathotypes within a high tree density olive orchard in southern Spain.
    Navas-Cortés JA; Landa BB; Mercado-Blanco J; Trapero-Casas JL; Rodríguez-Jurado D; Jiménez-Díaz RM
    Phytopathology; 2008 Feb; 98(2):167-80. PubMed ID: 18943193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationships between several quadrat-based statistical measures used to characterize spatial aspects of disease incidence data.
    Ridout MS; Xu XM
    Phytopathology; 2000 Jun; 90(6):568-75. PubMed ID: 18944536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Meta-analysis of the Italian studies on short-term effects of air pollution].
    Biggeri A; Bellini P; Terracini B;
    Epidemiol Prev; 2001; 25(2 Suppl):1-71. PubMed ID: 11515188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial pattern analysis of citrus canker-infected plantings in são paulo, Brazil, and augmentation of infection elicited by the asian leafminer.
    Gottwald TR; Bassanezi RB; Amorim L; Bergamin-Filho A
    Phytopathology; 2007 Jun; 97(6):674-83. PubMed ID: 18943598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A stochastic optimization method to estimate the spatial distribution of a pathogen from a sample.
    Parnell S; Gottwald TR; Irey MS; Luo W; van den Bosch F
    Phytopathology; 2011 Oct; 101(10):1184-90. PubMed ID: 21916625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial Pattern Analysis of Sharka Disease (Plum pox virus Strain M) in Peach Orchards of Southern France.
    Dallot S; Gottwald T; Labonne G; Quiot JB
    Phytopathology; 2003 Dec; 93(12):1543-52. PubMed ID: 18943618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships between disease incidence at two levels in a spatial hierarchy.
    Hughes G; McRoberts N; Madden LV; Gottwald TR
    Phytopathology; 1997 May; 87(5):542-50. PubMed ID: 18945110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.