BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 21864841)

  • 1. Heterogeneous response of traction force at focal adhesions of vascular smooth muscle cells subjected to macroscopic stretch on a micropillar substrate.
    Nagayama K; Adachi A; Matsumoto T
    J Biomech; 2011 Oct; 44(15):2699-705. PubMed ID: 21864841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of single stress fiber stiffness in cultured aortic smooth muscle cells under relaxed and contracted states: Its relation to dynamic rearrangement of stress fibers.
    Nagayama K; Matsumoto T
    J Biomech; 2010 May; 43(8):1443-9. PubMed ID: 20189183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel patterned magnetic micropillar array substrate for analysis of cellular mechanical responses.
    Nagayama K; Inoue T; Hamada Y; Matsumoto T
    J Biomech; 2017 Dec; 65():194-202. PubMed ID: 29126605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tensile properties of single stress fibers isolated from cultured vascular smooth muscle cells.
    Deguchi S; Ohashi T; Sato M
    J Biomech; 2006; 39(14):2603-10. PubMed ID: 16216252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-dependent changes in smooth muscle cell stiffness and focal adhesion area in response to cyclic equibiaxial stretch.
    Na S; Trache A; Trzeciakowski J; Sun Z; Meininger GA; Humphrey JD
    Ann Biomed Eng; 2008 Mar; 36(3):369-80. PubMed ID: 18214679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct application of mechanical stimulation to cell adhesion sites using a novel magnetic-driven micropillar substrate.
    Nagayama K; Inoue T; Hamada Y; Sugita S; Matsumoto T
    Biomed Microdevices; 2018 Sep; 20(4):85. PubMed ID: 30259169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hic-5 deficiency enhances mechanosensitive apoptosis and modulates vascular remodeling.
    Kim-Kaneyama JR; Takeda N; Sasai A; Miyazaki A; Sata M; Hirabayashi T; Shibanuma M; Yamada G; Nose K
    J Mol Cell Cardiol; 2011 Jan; 50(1):77-86. PubMed ID: 20933520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Traction forces exerted by epithelial cell sheets.
    Saez A; Anon E; Ghibaudo M; du Roure O; Di Meglio JM; Hersen P; Silberzan P; Buguin A; Ladoux B
    J Phys Condens Matter; 2010 May; 22(19):194119. PubMed ID: 21386442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal responses of human endothelial and smooth muscle cells exposed to uniaxial cyclic tensile strain.
    Greiner AM; Biela SA; Chen H; Spatz JP; Kemkemer R
    Exp Biol Med (Maywood); 2015 Oct; 240(10):1298-309. PubMed ID: 25687334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular stress transmission through actin stress fiber network in adherent vascular cells.
    Deguchi S; Ohashi T; Sato M
    Mol Cell Biomech; 2005 Dec; 2(4):205-16. PubMed ID: 16705866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure alters endothelial effects upon vascular smooth muscle cells by decreasing smooth muscle cell proliferation and increasing smooth muscle cell apoptosis.
    Vouyouka AG; Jiang Y; Basson MD
    Surgery; 2004 Aug; 136(2):282-90. PubMed ID: 15300192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel micro tensile tester with feed-back control for viscoelastic analysis of single isolated smooth muscle cells.
    Nagayama K; Yanagihara S; Matsumoto T
    Med Eng Phys; 2007 Jun; 29(5):620-8. PubMed ID: 17123857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds.
    Jeong SI; Kwon JH; Lim JI; Cho SW; Jung Y; Sung WJ; Kim SH; Kim YH; Lee YM; Kim BS; Choi CY; Kim SJ
    Biomaterials; 2005 Apr; 26(12):1405-11. PubMed ID: 15482828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tensile properties of vascular smooth muscle cells: bridging vascular and cellular biomechanics.
    Matsumoto T; Nagayama K
    J Biomech; 2012 Mar; 45(5):745-55. PubMed ID: 22177671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical stress induced cellular orientation and phenotypic modulation of 3-D cultured smooth muscle cells.
    Kanda K; Matsuda T; Oka T
    ASAIO J; 1993; 39(3):M686-90. PubMed ID: 8268625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of cyclic stretch on proliferation of mesenchymal stem cells and their differentiation to smooth muscle cells.
    Ghazanfari S; Tafazzoli-Shadpour M; Shokrgozar MA
    Biochem Biophys Res Commun; 2009 Oct; 388(3):601-5. PubMed ID: 19695226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased synthetic phenotype behavior of smooth muscle cells in response to in vitro balloon angioplasty injury model.
    Acampora KB; Nagatomi J; Langan EM; LaBerge M
    Ann Vasc Surg; 2010 Jan; 24(1):116-26. PubMed ID: 19781909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Equibiaxial strain stimulates fibroblastic phenotype shift in smooth muscle cells in an engineered tissue model of the aortic wall.
    Butcher JT; Barrett BC; Nerem RM
    Biomaterials; 2006 Oct; 27(30):5252-8. PubMed ID: 16806457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of actin filament distribution on tensile properties of smooth muscle cells obtained from rat thoracic aortas.
    Nagayama K; Nagano Y; Sato M; Matsumoto T
    J Biomech; 2006; 39(2):293-301. PubMed ID: 16321631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular matrix effect on RhoA signaling modulation in vascular smooth muscle cells.
    Lim SM; Kreipe BA; Trzeciakowski J; Dangott L; Trache A
    Exp Cell Res; 2010 Oct; 316(17):2833-48. PubMed ID: 20599954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.