BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 21864975)

  • 1. Fabrication of WO3/Cu2O composite films and their photocatalytic activity.
    Wei S; Ma Y; Chen Y; Liu L; Liu Y; Shao Z
    J Hazard Mater; 2011 Oct; 194():243-9. PubMed ID: 21864975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photocatalysis and photoinduced hydrophilicity of WO3 thin films with underlying Pt nanoparticles.
    Miyauchi M
    Phys Chem Chem Phys; 2008 Nov; 10(41):6258-65. PubMed ID: 18936850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of ordered mesoporous Ag/WO3 and its highly efficient degradation of acetaldehyde under visible-light irradiation.
    Sun S; Wang W; Zeng S; Shang M; Zhang L
    J Hazard Mater; 2010 Jun; 178(1-3):427-33. PubMed ID: 20172648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced photoelectrocatalytic performance of Zn-doped WO(3) photocatalysts for nitrite ions degradation under visible light.
    Cheng XF; Leng WH; Liu DP; Zhang JQ; Cao CN
    Chemosphere; 2007 Aug; 68(10):1976-84. PubMed ID: 17482660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocatalytic activities of Mo-doped Bi2WO6 three-dimensional hierarchical microspheres.
    Song XC; Zheng YF; Ma R; Zhang YY; Yin HY
    J Hazard Mater; 2011 Aug; 192(1):186-91. PubMed ID: 21664048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B.
    Saleh TA; Gupta VK
    J Colloid Interface Sci; 2011 Oct; 362(2):337-44. PubMed ID: 21788030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of zinc and copper co-doped WO3 nanoparticles: Application in photocatalysis and photobiology.
    Mohammadi S; Sohrabi M; Golikand AN; Fakhri A
    J Photochem Photobiol B; 2016 Aug; 161():217-21. PubMed ID: 27262854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst.
    Yang L; Luo S; Li Y; Xiao Y; Kang Q; Cai Q
    Environ Sci Technol; 2010 Oct; 44(19):7641-6. PubMed ID: 20831154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A templated method to Bi2WO6 hollow microspheres and their conversion to double-shell Bi2O3/Bi2WO6 hollow microspheres with improved photocatalytic performance.
    Li X; Huang R; Hu Y; Chen Y; Liu W; Yuan R; Li Z
    Inorg Chem; 2012 Jun; 51(11):6245-50. PubMed ID: 22591138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemically directed assembly of photoactive metal oxide nanoparticle heterojunctions via the copper-catalyzed azide-alkyne cycloaddition "click" reaction.
    Cardiel AC; Benson MC; Bishop LM; Louis KM; Yeager JC; Tan Y; Hamers RJ
    ACS Nano; 2012 Jan; 6(1):310-8. PubMed ID: 22196212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overall water splitting under visible light through a two-step photoexcitation between TaON and WO3 in the presence of an iodate-iodide shuttle redox mediator.
    Abe R; Higashi M; Domen K
    ChemSusChem; 2011 Feb; 4(2):228-37. PubMed ID: 21275062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solar photocatalytic activity of TiO2 modified with WO3 on the degradation of an organophosphorus pesticide.
    Ramos-Delgado NA; Gracia-Pinilla MA; Maya-Treviño L; Hinojosa-Reyes L; Guzman-Mar JL; Hernández-Ramírez A
    J Hazard Mater; 2013 Dec; 263 Pt 1():36-44. PubMed ID: 23993423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cuprous oxide-reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O.
    Tran PD; Batabyal SK; Pramana SS; Barber J; Wong LH; Loo SC
    Nanoscale; 2012 Jul; 4(13):3875-8. PubMed ID: 22653156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocatalytic activity of novel AgBr/WO3 composite photocatalyst under visible light irradiation for methyl orange degradation.
    Cao J; Luo B; Lin H; Chen S
    J Hazard Mater; 2011 Jun; 190(1-3):700-6. PubMed ID: 21561712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Bi(2)WO(6)-TiO(2) heterostructures for Rhodamine B degradation under sunlike irradiation.
    Murcia López S; Hidalgo MC; Navío JA; Colón G
    J Hazard Mater; 2011 Jan; 185(2-3):1425-34. PubMed ID: 21074938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and photo-degradation application of WO3/TiO2 hollow spheres.
    Lv K; Li J; Qing X; Li W; Chen Q
    J Hazard Mater; 2011 May; 189(1-2):329-35. PubMed ID: 21398030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ti(iv) doped WO₃ nanocuboids: fabrication and enhanced visible-light-driven photocatalytic performance.
    Feng C; Wang S; Geng B
    Nanoscale; 2011 Sep; 3(9):3695-9. PubMed ID: 21785781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different recycle behavior of Cu2+ and Fe3+ ions for phenol photodegradation over TiO2 and WO3.
    Wan L; Sheng J; Chen H; Xu Y
    J Hazard Mater; 2013 Nov; 262():114-20. PubMed ID: 24018136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. WO3 modified titanate network film: highly efficient photo-mineralization of 2-propanol under visible light irradiation.
    Li Q; Kako T; Ye J
    Chem Commun (Camb); 2010 Aug; 46(29):5352-4. PubMed ID: 20559586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visible-light photocatalytic inactivation of Escherichia coli by K4Nb6O17 and Ag/Cu modified K4Nb6O17.
    Lin HY; Lin HM
    J Hazard Mater; 2012 May; 217-218():231-7. PubMed ID: 22480703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.