These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 21865000)

  • 1. Microwave-assisted forced degradation using high-throughput microtiter platforms.
    Prekodravac B; Damm M; Kappe CO
    J Pharm Biomed Anal; 2011 Dec; 56(5):867-73. PubMed ID: 21865000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-throughput platform for low-volume high-temperature/pressure sealed vessel solvent extractions.
    Damm M; Kappe CO
    Anal Chim Acta; 2011 Nov; 707(1-2):76-83. PubMed ID: 22027122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput experimentation platform: parallel microwave chemistry in HPLC/GC vials.
    Damm M; Kappe CO
    J Comb Chem; 2009; 11(3):460-8. PubMed ID: 19275226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave-assisted high-throughput derivatization techniques utilizing silicon carbide microtiter platforms.
    Damm M; Rechberger G; Kollroser M; Kappe CO
    J Chromatogr A; 2010 Jan; 1217(1):167-70. PubMed ID: 19962705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput microwave-assisted organic synthesis: moving from automated sequential to parallel library-generation formats in silicon carbide microtiter plates.
    Kremsner JM; Stadler A; Kappe CO
    J Comb Chem; 2007; 9(2):285-91. PubMed ID: 17348734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel microwave synthesis of 2-styrylquinazolin-4(3H)-ones in a high-throughput platform using HPLC/GC vials as reaction vessels.
    Baghbanzadeh M; Molnar M; Damm M; Reidlinger C; Dabiri M; Kappe CO
    J Comb Chem; 2009; 11(4):676-84. PubMed ID: 19432481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave-assisted high-throughput acid hydrolysis in silicon carbide microtiter platforms--a rapid and low volume sample preparation technique for total amino acid analysis in proteins and peptides.
    Damm M; Holzer M; Radspieler G; Marsche G; Kappe CO
    J Chromatogr A; 2010 Dec; 1217(50):7826-32. PubMed ID: 21056423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel microwave chemistry in silicon carbide microtiter platforms: a review.
    Kappe CO; Damm M
    Mol Divers; 2012 Feb; 16(1):5-25. PubMed ID: 22127640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An evaluation of microwave-assisted derivatization procedures using hyphenated mass spectrometric techniques.
    Damm M; Rechberger G; Kollroser M; Kappe CO
    J Chromatogr A; 2009 Jul; 1216(31):5875-81. PubMed ID: 19555958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silicon carbide passive heating elements in microwave-assisted organic synthesis.
    Kremsner JM; Kappe CO
    J Org Chem; 2006 Jun; 71(12):4651-8. PubMed ID: 16749800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel microwave chemistry in silicon carbide reactor platforms: an in-depth investigation into heating characteristics.
    Damm M; Kappe CO
    Mol Divers; 2009 Nov; 13(4):529-43. PubMed ID: 19548098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave-assisted parallel synthesis of fused heterocycles in a novel parallel multimode reactor.
    Treu M; Karner T; Kousek R; Berger H; Mayer M; McConnell DB; Stadler A
    J Comb Chem; 2008; 10(6):863-8. PubMed ID: 18808188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicon carbide as a heat-enhancing agent in microwave ablation: in vitro experiments.
    Isfort P; Penzkofer T; Pfaff E; Bruners P; Günther RW; Schmitz-Rode T; Mahnken AH
    Cardiovasc Intervent Radiol; 2011 Aug; 34(4):833-8. PubMed ID: 21104413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sintered silicon carbide: a new ceramic vessel material for microwave chemistry in single-mode reactors.
    Gutmann B; Obermayer D; Reichart B; Prekodravac B; Irfan M; Kremsner JM; Kappe CO
    Chemistry; 2010 Oct; 16(40):12182-94. PubMed ID: 20845418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of microwave oven heating for prediction of drug-excipient compatibilities and accelerated stability studies.
    Schou-Pedersen AM; Østergaard J; Cornett C; Hansen SH
    Int J Pharm; 2015 May; 485(1-2):97-107. PubMed ID: 25746946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling the mysteries of microwave chemistry using silicon carbide reactor technology.
    Kappe CO
    Acc Chem Res; 2013 Jul; 46(7):1579-87. PubMed ID: 23463987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the energy efficiency of microwave-assisted organic reactions.
    Razzaq T; Kappe CO
    ChemSusChem; 2008; 1(1-2):123-32. PubMed ID: 18605675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromagnetic simulations of microwave heating experiments using reaction vessels made out of silicon carbide.
    Robinson J; Kingman S; Irvine D; Licence P; Smith A; Dimitrakis G; Obermayer D; Kappe CO
    Phys Chem Chem Phys; 2010 Sep; 12(36):10793-800. PubMed ID: 20625593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Migration testing with olive oil in a microwave oven.
    Rijk R; de Kruijf N
    Food Addit Contam; 1993; 10(6):631-45. PubMed ID: 8288007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid solid-phase synthesis of a calmodulin-binding peptide using controlled microwave irradiation.
    Bacsa B; Kappe CO
    Nat Protoc; 2007; 2(9):2222-7. PubMed ID: 17853879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.