These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 21865205)

  • 1. Factors associated with use of slip-resistant shoes in US limited-service restaurant workers.
    Verma SK; Courtney TK; Corns HL; Huang YH; Lombardi DA; Chang WR; Brennan MJ; Perry MJ
    Inj Prev; 2012 Jun; 18(3):176-81. PubMed ID: 21865205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Traction performance across the life of slip-resistant footwear: Preliminary results from a longitudinal study.
    Hemler SL; Pliner EM; Redfern MS; Haight JM; Beschorner KE
    J Safety Res; 2020 Sep; 74():219-225. PubMed ID: 32951786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An observational ergonomic tool for assessing the worn condition of slip-resistant shoes.
    Beschorner KE; Siegel JL; Hemler SL; Sundaram VH; Chanda A; Iraqi A; Haight JM; Redfern MS
    Appl Ergon; 2020 Oct; 88():103140. PubMed ID: 32678768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Worn region size of shoe outsole impacts human slips: Testing a mechanistic model.
    Sundaram VH; Hemler SL; Chanda A; Haight JM; Redfern MS; Beschorner KE
    J Biomech; 2020 May; 105():109797. PubMed ID: 32423543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluid pressures at the shoe-floor-contaminant interface during slips: effects of tread and implications on slip severity.
    Beschorner KE; Albert DL; Chambers AJ; Redfern MS
    J Biomech; 2014 Jan; 47(2):458-63. PubMed ID: 24267270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prospective validity assessment of a friction prediction model based on tread outsole features of slip-resistant shoes.
    Beschorner KE; Nasarwanji M; Deschler C; Hemler SL
    Appl Ergon; 2024 Jan; 114():104110. PubMed ID: 37595332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of natural shoe wear on traction performance: a longitudinal study.
    Hemler SL; Pliner EM; Redfern MS; Haight JM; Beschorner KE
    Footwear Sci; 2022; 14(1):1-12. PubMed ID: 37701063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait kinetics impact shoe tread wear rate.
    Hemler SL; Sider JR; Redfern MS; Beschorner KE
    Gait Posture; 2021 May; 86():157-161. PubMed ID: 33735824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of a portable shoe tread scanner to predict slip risk.
    Hemler SL; Beschorner KE
    J Safety Res; 2023 Sep; 86():5-11. PubMed ID: 37718069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting Hydrodynamic Conditions under Worn Shoes using the Tapered-Wedge Solution of Reynolds Equation.
    Hemler SL; Charbonneau DN; Beschorner KE
    Tribol Int; 2020 May; 145():. PubMed ID: 32863531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Model of Shoe Wear Progression: Comparison with Experimental Results.
    Moghaddam SRM; Hemler SL; Redfern MS; Jacobs TD; Beschorner KE
    Wear; 2019 Mar; 422-423():235-241. PubMed ID: 37200982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different Influencing Factors for Risk of Falls Between Men and Women while Descending from Mount Fuji.
    Uno T; Mitsui S; Watanabe M; Takiguchi C; Horiuchi M
    Wilderness Environ Med; 2023 Jun; 34(2):143-152. PubMed ID: 36870861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Winter Footwear: Comparison of Test Methods to Determine Footwear Slip Resistance on Ice Surfaces.
    Roshan Fekr A; Li Y; Gauvin C; Wong G; Cheng W; Fernie G; Dutta T
    Int J Environ Res Public Health; 2021 Jan; 18(2):. PubMed ID: 33419196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shoe Tread Wear Occurs Primarily during Early Stance and Precedes the Peak Required Coefficient of Friction.
    Bharthi R; Sukinik JR; Hemler SL; Beschorner KE
    Footwear Sci; 2022; 14(3):219-228. PubMed ID: 37583564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalizability of Footwear Traction Performance across Flooring and Contaminant Conditions.
    Chanda A; Jones TG; Beschorner KE
    IISE Trans Occup Ergon Hum Factors; 2018; 6(2):98-108. PubMed ID: 31742241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Work-related slip, trip and fall injuries reported by National Health Service staff in Great Britain: how many are due to slipping?
    Liddle M; Nicholls G; Leigh D; Kinder J; Curran A; Zand M
    Inj Prev; 2024 Jul; ():. PubMed ID: 39043571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and Evaluation of a Slip Detection Algorithm for Walking on Level and Inclined Ice Surfaces.
    Cen JY; Dutta T
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A taxonomy of surface mining slip, trip, and fall hazards as a guide to research and practice.
    Nasarwanji MF; Dempsey PG; Pollard J; Whitson A; Kocher L
    Appl Ergon; 2021 Nov; 97():103542. PubMed ID: 34375880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Neural Network for Slip Detection on Ice Surface.
    Wu K; He S; Fernie G; Roshan Fekr A
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33276475
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.