These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 21865257)

  • 21. Allometric scaling of discontinuous gas exchange patterns in the locust Locusta migratoria throughout ontogeny.
    Snelling EP; Matthews PG; Seymour RS
    J Exp Biol; 2012 Oct; 215(Pt 19):3388-93. PubMed ID: 22735346
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discontinuous gas exchange in dung beetles: patterns and ecological implications.
    Duncan FD; Byrne MJ
    Oecologia; 2000 Mar; 122(4):452-458. PubMed ID: 28308336
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of discontinuous gas exchange in insects: the chthonic hypothesis does not hold water.
    Gibbs AG; Johnson RA
    J Exp Biol; 2004 Sep; 207(Pt 20):3477-82. PubMed ID: 15339943
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The hygric hypothesis does not hold water: abolition of discontinuous gas exchange cycles does not affect water loss in the ant Camponotus vicinus.
    Lighton JR; Turner RJ
    J Exp Biol; 2008 Feb; 211(Pt 4):563-7. PubMed ID: 18245633
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxidative stress induced by chlorine dioxide as an insecticidal factor to the Indian meal moth, Plodia interpunctella.
    Kumar S; Park J; Kim E; Na J; Chun YS; Kwon H; Kim W; Kim Y
    Pestic Biochem Physiol; 2015 Oct; 124():48-59. PubMed ID: 26453230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discontinuous gas-exchange in centipedes and its convergent evolution in tracheated arthropods.
    Klok CJ; Mercer RD; Chown SL
    J Exp Biol; 2002 Apr; 205(Pt 7):1019-29. PubMed ID: 11916997
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human brain blood flow and metabolism during isocapnic hyperoxia: the role of reactive oxygen species.
    Mattos JD; Campos MO; Rocha MP; Mansur DE; Rocha HNM; Garcia VP; Batista G; Alvares TS; Oliveira GV; Souza MV; Videira RLR; Rocha NG; Secher NH; Nóbrega ACL; Fernandes IA
    J Physiol; 2019 Feb; 597(3):741-755. PubMed ID: 30506968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Respiratory biology: why insects evolved discontinuous gas exchange.
    Lighton JR
    Curr Biol; 2007 Aug; 17(16):R645-7. PubMed ID: 17714655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A computational model of insect discontinuous gas exchange: A two-sensor, control systems approach.
    Grieshaber BJ; Terblanche JS
    J Theor Biol; 2015 Jun; 374():138-51. PubMed ID: 25843216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discontinuous gas-exchange cycles in Scarabaeus dung beetles (Coleoptera: Scarabaeidae): mass-scaling and temperature dependence.
    Davis AL; Chown SL; Scholtz CH
    Physiol Biochem Zool; 1999; 72(5):555-65. PubMed ID: 10521323
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cockroaches breathe discontinuously to reduce respiratory water loss.
    Schimpf NG; Matthews PG; Wilson RS; White CR
    J Exp Biol; 2009 Sep; 212(17):2773-80. PubMed ID: 19684210
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon monoxide activates autophagy via mitochondrial reactive oxygen species formation.
    Lee SJ; Ryter SW; Xu JF; Nakahira K; Kim HP; Choi AM; Kim YS
    Am J Respir Cell Mol Biol; 2011 Oct; 45(4):867-73. PubMed ID: 21441382
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CBR1 decreases protein carbonyl levels via the ROS/Akt/CREB pathway to extend lifespan in the cotton bollworm, Helicoverpa armigera.
    Geng SL; Li HY; Zhang XS; Wang T; Zhou SP; Xu WH
    FEBS J; 2023 Apr; 290(8):2127-2145. PubMed ID: 36421037
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of discontinuous gas exchange on respiratory water loss in grasshoppers (Orthoptera: Acrididae) varies across an aridity gradient.
    Huang SP; Talal S; Ayali A; Gefen E
    J Exp Biol; 2015 Aug; 218(Pt 16):2510-7. PubMed ID: 26290590
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reactive oxygen species, inflammation, and lung diseases.
    Rosanna DP; Salvatore C
    Curr Pharm Des; 2012; 18(26):3889-900. PubMed ID: 22632750
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Respiratory and cuticular water loss in insects with continuous gas exchange: comparison across five ant species.
    Schilman PE; Lighton JR; Holway DA
    J Insect Physiol; 2005 Dec; 51(12):1295-305. PubMed ID: 16154585
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of redox metabolism for adaptation of aquatic animals to drastic changes in oxygen availability.
    Welker AF; Moreira DC; Campos ÉG; Hermes-Lima M
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Aug; 165(4):384-404. PubMed ID: 23587877
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diffusion in gas exchange of insects.
    Scheid P; Hook C; Bridges CR
    Fed Proc; 1982 Apr; 41(6):2143-5. PubMed ID: 6281073
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxygen pathway modeling estimates high reactive oxygen species production above the highest permanent human habitation.
    Cano I; Selivanov V; Gomez-Cabrero D; Tegnér J; Roca J; Wagner PD; Cascante M
    PLoS One; 2014; 9(11):e111068. PubMed ID: 25375931
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature- and body mass-related variation in cyclic gas exchange characteristics and metabolic rate of seven weevil species: Broader implications.
    Klok CJ; Chown SL
    J Insect Physiol; 2005 Jul; 51(7):789-801. PubMed ID: 15907926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.