These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 21865270)

  • 1. Measuring continuous baseline covariate imbalances in clinical trial data.
    Ciolino JD; Martin RH; Zhao W; Hill MD; Jauch EC; Palesch YY
    Stat Methods Med Res; 2015 Apr; 24(2):255-72. PubMed ID: 21865270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conditional estimation and inference to address observed covariate imbalance in randomized clinical trials.
    Zhang Z; Tang L; Liu C; Berger VW
    Clin Trials; 2019 Apr; 16(2):122-131. PubMed ID: 30444129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying the cost in power of ignoring continuous covariate imbalances in clinical trial randomization.
    Ciolino J; Zhao W; Martin R; Palesch Y
    Contemp Clin Trials; 2011 Mar; 32(2):250-9. PubMed ID: 21078415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of baseline covariate imbalance on bias in treatment effect estimation in cluster randomized trials: Race as an example.
    Yang S; Starks MA; Hernandez AF; Turner EL; Califf RM; O'Connor CM; Mentz RJ; Roy Choudhury K
    Contemp Clin Trials; 2020 Jan; 88():105775. PubMed ID: 31228563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How large are the consequences of covariate imbalance in cluster randomized trials: a simulation study with a continuous outcome and a binary covariate at the cluster level.
    Moerbeek M; van Schie S
    BMC Med Res Methodol; 2016 Jul; 16():79. PubMed ID: 27401771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bias, precision and statistical power of analysis of covariance in the analysis of randomized trials with baseline imbalance: a simulation study.
    Egbewale BE; Lewis M; Sim J
    BMC Med Res Methodol; 2014 Apr; 14():49. PubMed ID: 24712304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of percentage change from baseline as an outcome in a controlled trial is statistically inefficient: a simulation study.
    Vickers AJ
    BMC Med Res Methodol; 2001; 1():6. PubMed ID: 11459516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining biomarkers for classification with covariate adjustment.
    Kim S; Huang Y
    Stat Med; 2017 Jul; 36(15):2347-2362. PubMed ID: 28276080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reacting to prognostic covariate imbalance in randomised controlled trials.
    Coskinas X; Schou IM; Simes J; Martin A
    Contemp Clin Trials; 2021 Nov; 110():106544. PubMed ID: 34454099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous covariate imbalance and conditional power for clinical trial interim analyses.
    Ciolino JD; Martin RH; Zhao W; Jauch EC; Hill MD; Palesch YY
    Contemp Clin Trials; 2014 May; 38(1):9-18. PubMed ID: 24607294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling ecological bias in evidence synthesis of trials reporting on collapsed and overlapping covariate categories.
    Govan L; Ades AE; Weir CJ; Welton NJ; Langhorne P
    Stat Med; 2010 May; 29(12):1340-56. PubMed ID: 20191599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods and processes for the reanalysis of the NINDS tissue plasminogen activator for acute ischemic stroke treatment trial.
    Hertzberg V; Ingall T; O'Fallon W; Asplund K; Goldfrank L; Louis T; Christianson T
    Clin Trials; 2008; 5(4):308-15. PubMed ID: 18697845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Findings from the reanalysis of the NINDS tissue plasminogen activator for acute ischemic stroke treatment trial.
    Ingall TJ; O'Fallon WM; Asplund K; Goldfrank LR; Hertzberg VS; Louis TA; Christianson TJ
    Stroke; 2004 Oct; 35(10):2418-24. PubMed ID: 15345796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimal sufficient balance-a new strategy to balance baseline covariates and preserve randomness of treatment allocation.
    Zhao W; Hill MD; Palesch Y
    Stat Methods Med Res; 2015 Dec; 24(6):989-1002. PubMed ID: 22287602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of covariance in randomized trials: More precision and valid confidence intervals, without model assumptions.
    Wang B; Ogburn EL; Rosenblum M
    Biometrics; 2019 Dec; 75(4):1391-1400. PubMed ID: 31009064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Choosing an imbalance metric for covariate-constrained randomization in multiple-arm cluster-randomized trials.
    Ciolino JD; Diebold A; Jensen JK; Rouleau GW; Koloms KK; Tandon D
    Trials; 2019 May; 20(1):293. PubMed ID: 31138319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two new covariate adjustment methods for non-inferiority assessment of binary clinical trials data.
    Hou Y; Ding V; Li K; Zhou XH
    J Biopharm Stat; 2011 Jan; 21(1):77-93. PubMed ID: 21191856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A summary statistic for measuring change from baseline.
    Donahue RM
    J Biopharm Stat; 1997 May; 7(2):287-99. PubMed ID: 9136070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A note on non-parametric ANCOVA for covariate adjustment in randomized clinical trials.
    Lesaffre E; Senn S
    Stat Med; 2003 Dec; 22(23):3583-96. PubMed ID: 14652862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Simulation-Based Comparison of Covariate Adjustment Methods for the Analysis of Randomized Controlled Trials.
    Chaussé P; Liu J; Luta G
    Int J Environ Res Public Health; 2016 Apr; 13(4):414. PubMed ID: 27077870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.