These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 21865526)

  • 1. The spatial and temporal patterns of odors sampled by lobsters and crabs in a turbulent plume.
    Reidenbach MA; Koehl MA
    J Exp Biol; 2011 Sep; 214(Pt 18):3138-53. PubMed ID: 21865526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexibility of crab chemosensory sensilla enables flicking antennules to sniff.
    Waldrop LD; Reidenbach MA; Koehl MA
    Biol Bull; 2015 Oct; 229(2):185-98. PubMed ID: 26504159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine-scale patterns of odor encounter by the antennules of mantis shrimp tracking turbulent plumes in wave-affected and unidirectional flow.
    Mead KS; Wiley MB; Koehl MA; Koseff JR
    J Exp Biol; 2003 Jan; 206(Pt 1):181-93. PubMed ID: 12456708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Getting ahead: context-dependent responses to odorant filaments drive along-stream progress during odor tracking in blue crabs.
    Page JL; Dickman BD; Webster DR; Weissburg MJ
    J Exp Biol; 2011 May; 214(Pt 9):1498-512. PubMed ID: 21490258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fluid mechanics of arthropod sniffing in turbulent odor plumes.
    Koehl MA
    Chem Senses; 2006 Feb; 31(2):93-105. PubMed ID: 16339271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lobster sniffing: antennule design and hydrodynamic filtering of information in an odor plume.
    Koehl MA; Koseff JR; Crimaldi JP; McCay MG; Cooper T; Wiley MB; Moore PA
    Science; 2001 Nov; 294(5548):1948-51. PubMed ID: 11729325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dine or dash? Turbulence inhibits blue crab navigation in attractive-aversive odor plumes by altering signal structure encoded by the olfactory pathway.
    Weissburg M; Atkins L; Berkenkamp K; Mankin D
    J Exp Biol; 2012 Dec; 215(Pt 23):4175-82. PubMed ID: 23136153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antennule morphology and flicking kinematics facilitate odor sampling by the spiny lobster, Panulirus argus.
    Reidenbach MA; George N; Koehl MA
    J Exp Biol; 2008 Sep; 211(Pt 17):2849-58. PubMed ID: 18723544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ontogenetic scaling of the olfactory antennae and flicking behavior of the shore crab, Hemigrapsus oregonensis.
    Waldrop LD
    Chem Senses; 2013 Jul; 38(6):541-50. PubMed ID: 23761682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do terrestrial hermit crabs sniff? Air flow and odorant capture by flicking antennules.
    Waldrop LD; Koehl MA
    J R Soc Interface; 2016 Jan; 13(114):20150850. PubMed ID: 26763332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of odor flux and pulse rate on chemosensory tracking in turbulent odor plumes by the blue crab, Callinectes sapidus.
    Keller TA; Weissburg MJ
    Biol Bull; 2004 Aug; 207(1):44-55. PubMed ID: 15315942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous sampling of flow and odorants by crustaceans can aid searches within a turbulent plume.
    Pravin S; Reidenbach MA
    Sensors (Basel); 2013 Dec; 13(12):16591-610. PubMed ID: 24300599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Staying the course: chemical signal spatial properties and concentration mediate cross-stream motion in turbulent plumes.
    Page JL; Dickman BD; Webster DR; Weissburg MJ
    J Exp Biol; 2011 May; 214(Pt 9):1513-22. PubMed ID: 21490259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Odor tracking in aquatic organisms: the importance of temporal and spatial intermittency of the turbulent plume.
    Michaelis BT; Leathers KW; Bobkov YV; Ache BW; Principe JC; Baharloo R; Park IM; Reidenbach MA
    Sci Rep; 2020 May; 10(1):7961. PubMed ID: 32409665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using lobster noses to inspire robot sensor design.
    Mead KS
    Trends Biotechnol; 2002 Jul; 20(7):276-7. PubMed ID: 12062964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ontogenetic changes in the olfactory antennules of the shore crab, Hemigrapsus oregonensis, maintain sniffing function during growth.
    Waldrop LD; Hann M; Henry AK; Kim A; Punjabi A; Koehl MA
    J R Soc Interface; 2015 Jan; 12(102):20141077. PubMed ID: 25411408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defense through sensory inactivation: sea hare ink reduces sensory and motor responses of spiny lobsters to food odors.
    Love-Chezem T; Aggio JF; Derby CD
    J Exp Biol; 2013 Apr; 216(Pt 8):1364-72. PubMed ID: 23536587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluid mechanics produces conflicting, constraints during olfactory navigation of blue crabs, Callinectes sapidus.
    Weissburg MJ; James CP; Smee DL; Webster DR
    J Exp Biol; 2003 Jan; 206(Pt 1):171-80. PubMed ID: 12456707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking Odorant Plumes.
    Reidenbach MA
    Methods Mol Biol; 2018; 1820():251-263. PubMed ID: 29884951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of chemosensory sensilla mediating antennular flicking behavior in Panulirus argus, the Caribbean spiny lobster.
    Daniel PC; Fox M; Mehta S
    Biol Bull; 2008 Aug; 215(1):24-33. PubMed ID: 18723634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.