These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 21865671)
21. Effect of video display on the grading of diabetic retinopathy. Costen MT; Newsom RS; Parkin B; Marsh CS; Mehta RL; Luff AJ; Canning CR Eye (Lond); 2004 Feb; 18(2):169-74. PubMed ID: 14762410 [TBL] [Abstract][Full Text] [Related]
22. Computer-assisted microaneurysm turnover in the early stages of diabetic retinopathy. Bernardes R; Nunes S; Pereira I; Torrent T; Rosa A; Coelho D; Cunha-Vaz J Ophthalmologica; 2009; 223(5):284-91. PubMed ID: 19372722 [TBL] [Abstract][Full Text] [Related]
23. Quantification of diabetic maculopathy by digital imaging of the fundus. Phillips RP; Spencer T; Ross PG; Sharp PF; Forrester JV Eye (Lond); 1991; 5 ( Pt 1)():130-7. PubMed ID: 2060662 [TBL] [Abstract][Full Text] [Related]
24. Sensitivity and specificity of digital retinal images in grading diabetic retinopathy. Saari JM; Summanen P; Kivelä T; Saari KM Acta Ophthalmol Scand; 2004 Apr; 82(2):126-30. PubMed ID: 15043527 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of automated image analysis software for the detection of diabetic retinopathy to reduce the ophthalmologists' workload. Soto-Pedre E; Navea A; Millan S; Hernaez-Ortega MC; Morales J; Desco MC; Pérez P Acta Ophthalmol; 2015 Feb; 93(1):e52-6. PubMed ID: 24975456 [TBL] [Abstract][Full Text] [Related]
26. Computer classification of nonproliferative diabetic retinopathy. Lee SC; Lee ET; Wang Y; Klein R; Kingsley RM; Warn A Arch Ophthalmol; 2005 Jun; 123(6):759-64. PubMed ID: 15955976 [TBL] [Abstract][Full Text] [Related]
27. Automated grading for diabetic retinopathy: a large-scale audit using arbitration by clinical experts. Fleming AD; Goatman KA; Philip S; Prescott GJ; Sharp PF; Olson JA Br J Ophthalmol; 2010 Dec; 94(12):1606-10. PubMed ID: 20858722 [TBL] [Abstract][Full Text] [Related]
28. Screening for sight-threatening diabetic retinopathy: comparison of fundus photography with automated color contrast threshold test. Ong GL; Ripley LG; Newsom RS; Cooper M; Casswell AG Am J Ophthalmol; 2004 Mar; 137(3):445-52. PubMed ID: 15013866 [TBL] [Abstract][Full Text] [Related]
29. Automated detection of diabetic retinopathy on digital fundus images. Sinthanayothin C; Boyce JF; Williamson TH; Cook HL; Mensah E; Lal S; Usher D Diabet Med; 2002 Feb; 19(2):105-12. PubMed ID: 11874425 [TBL] [Abstract][Full Text] [Related]
30. Diagnostic accuracy of diabetic retinopathy grading by an artificial intelligence-enabled algorithm compared with a human standard for wide-field true-colour confocal scanning and standard digital retinal images. Olvera-Barrios A; Heeren TF; Balaskas K; Chambers R; Bolter L; Egan C; Tufail A; Anderson J Br J Ophthalmol; 2021 Feb; 105(2):265-270. PubMed ID: 32376611 [TBL] [Abstract][Full Text] [Related]
31. The efficacy of automated "disease/no disease" grading for diabetic retinopathy in a systematic screening programme. Philip S; Fleming AD; Goatman KA; Fonseca S; McNamee P; Scotland GS; Prescott GJ; Sharp PF; Olson JA Br J Ophthalmol; 2007 Nov; 91(11):1512-7. PubMed ID: 17504851 [TBL] [Abstract][Full Text] [Related]
32. TOSCA-Imaging--developing Internet based image processing software for screening and diagnosis of diabetic retinopathy. Hejlesen O; Ege B; Englmeier KH; Aldington S; McCanna L; Bek T Stud Health Technol Inform; 2004; 107(Pt 1):222-6. PubMed ID: 15360807 [TBL] [Abstract][Full Text] [Related]
33. Automated segmentation of foveal avascular zone in fundus fluorescein angiography. Zheng Y; Gandhi JS; Stangos AN; Campa C; Broadbent DM; Harding SP Invest Ophthalmol Vis Sci; 2010 Jul; 51(7):3653-9. PubMed ID: 20130279 [TBL] [Abstract][Full Text] [Related]
34. Assessment of automated screening for treatment-requiring diabetic retinopathy. Larsen M; Gondolf T; Godt J; Jensen MS; Hartvig NV; Lund-Andersen H; Larsen N Curr Eye Res; 2007 Apr; 32(4):331-6. PubMed ID: 17453954 [TBL] [Abstract][Full Text] [Related]
35. Effectiveness of optometrist screening for diabetic retinopathy using slit-lamp biomicroscopy. Prasad S; Kamath GG; Jones K; Clearkin LG; Phillips RP Eye (Lond); 2001 Oct; 15(Pt 5):595-601. PubMed ID: 11702969 [TBL] [Abstract][Full Text] [Related]
37. Optimal filter framework for automated, instantaneous detection of lesions in retinal images. Quellec G; Russell SR; Abramoff MD IEEE Trans Med Imaging; 2011 Feb; 30(2):523-33. PubMed ID: 21292586 [TBL] [Abstract][Full Text] [Related]
38. Automatic detection of microaneurysms in color fundus images. Walter T; Massin P; Erginay A; Ordonez R; Jeulin C; Klein JC Med Image Anal; 2007 Dec; 11(6):555-66. PubMed ID: 17950655 [TBL] [Abstract][Full Text] [Related]
39. Beyond retinal screening: digital imaging in the assessment and follow-up of patients with diabetic retinopathy. Kerr D; Cavan DA; Jennings B; Dunnington C; Gold D; Crick M Diabet Med; 1998 Oct; 15(10):878-82. PubMed ID: 9796890 [TBL] [Abstract][Full Text] [Related]
40. Automated Diabetic Retinopathy Image Assessment Software: Diagnostic Accuracy and Cost-Effectiveness Compared with Human Graders. Tufail A; Rudisill C; Egan C; Kapetanakis VV; Salas-Vega S; Owen CG; Lee A; Louw V; Anderson J; Liew G; Bolter L; Srinivas S; Nittala M; Sadda S; Taylor P; Rudnicka AR Ophthalmology; 2017 Mar; 124(3):343-351. PubMed ID: 28024825 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]