BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 21865732)

  • 1. Downregulation of NaPi-IIa and NaPi-IIb Na-coupled phosphate transporters by coexpression of Klotho.
    Dërmaku-Sopjani M; Sopjani M; Saxena A; Shojaiefard M; Bogatikov E; Alesutan I; Eichenmüller M; Lang F
    Cell Physiol Biochem; 2011; 28(2):251-8. PubMed ID: 21865732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upregulation of the Na⁺-coupled phosphate cotransporters NaPi-IIa and NaPi-IIb by B-RAF.
    Pakladok T; Hosseinzadeh Z; Lebedeva A; Alesutan I; Lang F
    J Membr Biol; 2014 Feb; 247(2):137-45. PubMed ID: 24258620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Down-regulation of the Na+-coupled phosphate transporter NaPi-IIa by AMP-activated protein kinase.
    Dërmaku-Sopjani M; Almilaji A; Pakladok T; Munoz C; Hosseinzadeh Z; Blecua M; Sopjani M; Lang F
    Kidney Blood Press Res; 2013; 37(6):547-56. PubMed ID: 24356547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of NaPi-IIb in rodent and human kidney and upregulation in a model of chronic kidney disease.
    Motta SE; Imenez Silva PH; Daryadel A; Haykir B; Pastor-Arroyo EM; Bettoni C; Hernando N; Wagner CA
    Pflugers Arch; 2020 Apr; 472(4):449-460. PubMed ID: 32219532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Klotho/fibroblast growth factor 23- and PTH-independent estrogen receptor-α-mediated direct downregulation of NaPi-IIa by estrogen in the mouse kidney.
    Webster R; Sheriff S; Faroqui R; Siddiqui F; Hawse JR; Amlal H
    Am J Physiol Renal Physiol; 2016 Aug; 311(2):F249-59. PubMed ID: 27194721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of renal and intestinal Na/Pi cotransporters in the absence of GABARAP.
    Reining SC; Liesegang A; Betz H; Biber J; Murer H; Hernando N
    Pflugers Arch; 2010 Jun; 460(1):207-17. PubMed ID: 20354864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Type II Na+-Pi cotransporters in osteoblast mineral formation: regulation by inorganic phosphate.
    Lundquist P; Murer H; Biber J
    Cell Physiol Biochem; 2007; 19(1-4):43-56. PubMed ID: 17310099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate.
    Villa-Bellosta R; Sorribas V
    Toxicol Appl Pharmacol; 2008 Oct; 232(1):125-34. PubMed ID: 18586044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vitamin D and type II sodium-dependent phosphate cotransporters.
    Kido S; Kaneko I; Tatsumi S; Segawa H; Miyamoto K
    Contrib Nephrol; 2013; 180():86-97. PubMed ID: 23652552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The vitamin D analog ED-71 is a potent regulator of intestinal phosphate absorption and NaPi-IIb.
    Brown AJ; Zhang F; Ritter CS
    Endocrinology; 2012 Nov; 153(11):5150-6. PubMed ID: 22948213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The SLC34 family of sodium-dependent phosphate transporters.
    Wagner CA; Hernando N; Forster IC; Biber J
    Pflugers Arch; 2014 Jan; 466(1):139-53. PubMed ID: 24352629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proximal tubular handling of phosphate: A molecular perspective.
    Forster IC; Hernando N; Biber J; Murer H
    Kidney Int; 2006 Nov; 70(9):1548-59. PubMed ID: 16955105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cleavage of disulfide bonds leads to inactivation and degradation of the type IIa, but not type IIb sodium phosphate cotransporter expressed in Xenopus laevis oocytes.
    Lambert G; Traebert M; Biber J; Murer H
    J Membr Biol; 2000 Jul; 176(2):143-9. PubMed ID: 10926679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Akt2/PKBbeta-sensitive regulation of renal phosphate transport.
    Kempe DS; Ackermann TF; Boini KM; Klaus F; Umbach AT; Dërmaku-Sopjani M; Judenhofer MS; Pichler BJ; Capuano P; Stange G; Wagner CA; Birnbaum MJ; Pearce D; Föller M; Lang F
    Acta Physiol (Oxf); 2010 Sep; 200(1):75-85. PubMed ID: 20236253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An apical expression signal of the renal type IIc Na+-dependent phosphate cotransporter in renal epithelial cells.
    Ito M; Sakurai A; Hayashi K; Ohi A; Kangawa N; Nishiyama T; Sugino S; Uehata Y; Kamahara A; Sakata M; Tatsumi S; Kuwahata M; Taketani Y; Segawa H; Miyamoto K
    Am J Physiol Renal Physiol; 2010 Jul; 299(1):F243-54. PubMed ID: 20410212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Up-Regulation of Intestinal Phosphate Transporter NaPi-IIb (SLC34A2) by the Kinases SPAK and OSR1.
    Fezai M; Elvira B; Warsi J; Ben-Attia M; Hosseinzadeh Z; Lang F
    Kidney Blood Press Res; 2015; 40(6):555-64. PubMed ID: 26506223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intestinal Depletion of NaPi-IIb/Slc34a2 in Mice: Renal and Hormonal Adaptation.
    Hernando N; Myakala K; Simona F; Knöpfel T; Thomas L; Murer H; Wagner CA; Biber J
    J Bone Miner Res; 2015 Oct; 30(10):1925-37. PubMed ID: 25827490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionally important residues in the predicted 3(rd) transmembrane domain of the type IIa sodium-phosphate co-transporter (NaPi-IIa).
    Virkki LV; Forster IC; Bacconi A; Biber J; Murer H
    J Membr Biol; 2005 Aug; 206(3):227-38. PubMed ID: 16456717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule.
    Hu MC; Shi M; Zhang J; Pastor J; Nakatani T; Lanske B; Razzaque MS; Rosenblatt KP; Baum MG; Kuro-o M; Moe OW
    FASEB J; 2010 Sep; 24(9):3438-50. PubMed ID: 20466874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a type IIb sodium-phosphate cotransporter from zebrafish (Danio rerio) kidney.
    Graham C; Nalbant P; Schölermann B; Hentschel H; Kinne RK; Werner A
    Am J Physiol Renal Physiol; 2003 Apr; 284(4):F727-36. PubMed ID: 12488247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.