These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
553 related articles for article (PubMed ID: 21865869)
1. Genetically modified crops for biomass increase. Genes and strategies. Rojas CA; Hemerly AS; Ferreira PC GM Crops; 2010; 1(3):137-42. PubMed ID: 21865869 [TBL] [Abstract][Full Text] [Related]
2. Is genetically modified crop the answer for the next green revolution? Basu SK; Dutta M; Goyal A; Bhowmik PK; Kumar J; Nandy S; Scagliusi SM; Prasad R GM Crops; 2010; 1(2):68-79. PubMed ID: 21865874 [TBL] [Abstract][Full Text] [Related]
3. Towards much more efficient biofuel crops - can sugarcane pave the way? Tammisola J GM Crops; 2010; 1(4):181-98. PubMed ID: 21844673 [TBL] [Abstract][Full Text] [Related]
4. Weeding with transgenes. Duke SO Trends Biotechnol; 2003 May; 21(5):192-5. PubMed ID: 12727378 [TBL] [Abstract][Full Text] [Related]
5. Industrial protein production crops: new needs and new opportunities. Herman EM; Schmidt MA GM Crops; 2010; 1(1):2-7. PubMed ID: 21912205 [TBL] [Abstract][Full Text] [Related]
6. Genetic engineering of energy crops: a strategy for biofuel production in China. Xie G; Peng L J Integr Plant Biol; 2011 Feb; 53(2):143-50. PubMed ID: 21205188 [TBL] [Abstract][Full Text] [Related]
7. Transgenic crops: an option for future agriculture. Yang WC; Wan J J Integr Plant Biol; 2011 Jul; 53(7):510-1. PubMed ID: 21733120 [No Abstract] [Full Text] [Related]
9. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Good AG; Shrawat AK; Muench DG Trends Plant Sci; 2004 Dec; 9(12):597-605. PubMed ID: 15564127 [TBL] [Abstract][Full Text] [Related]
10. Plant genetic engineering to improve biomass characteristics for biofuels. Sticklen M Curr Opin Biotechnol; 2006 Jun; 17(3):315-9. PubMed ID: 16701991 [TBL] [Abstract][Full Text] [Related]
11. Generating high-yielding varieties by genetic manipulation of plant architecture. Sakamoto T; Matsuoka M Curr Opin Biotechnol; 2004 Apr; 15(2):144-7. PubMed ID: 15081053 [TBL] [Abstract][Full Text] [Related]
12. Heterologous expression of glycosyl hydrolases in planta: a new departure for biofuels. Taylor LE; Dai Z; Decker SR; Brunecky R; Adney WS; Ding SY; Himmel ME Trends Biotechnol; 2008 Aug; 26(8):413-24. PubMed ID: 18579242 [TBL] [Abstract][Full Text] [Related]
13. Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Waclawovsky AJ; Sato PM; Lembke CG; Moore PH; Souza GM Plant Biotechnol J; 2010 Apr; 8(3):263-76. PubMed ID: 20388126 [TBL] [Abstract][Full Text] [Related]
15. Genetic and biotechnological approaches for biofuel crop improvement. Vega-Sánchez ME; Ronald PC Curr Opin Biotechnol; 2010 Apr; 21(2):218-24. PubMed ID: 20181473 [TBL] [Abstract][Full Text] [Related]
16. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. Lawlor DW J Exp Bot; 2002 Apr; 53(370):773-87. PubMed ID: 11912221 [TBL] [Abstract][Full Text] [Related]
17. A global overview of biotech (GM) crops: adoption, impact and future prospects. James C GM Crops; 2010; 1(1):8-12. PubMed ID: 21912206 [TBL] [Abstract][Full Text] [Related]
18. Intragenic crop improvement: combining the benefits of traditional breeding and genetic engineering. Rommens CM J Agric Food Chem; 2007 May; 55(11):4281-8. PubMed ID: 17488120 [TBL] [Abstract][Full Text] [Related]
19. Breeding technologies to increase crop production in a changing world. Tester M; Langridge P Science; 2010 Feb; 327(5967):818-22. PubMed ID: 20150489 [TBL] [Abstract][Full Text] [Related]
20. Genetic modification of wood quality for second-generation biofuel production. Lu S; Li L; Zhou G GM Crops; 2010; 1(4):230-6. PubMed ID: 21844678 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]