BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 21866211)

  • 21. Long-Term Cultures of Human Cornea Limbal Explants Form 3D Structures Ex Vivo - Implications for Tissue Engineering and Clinical Applications.
    Szabó DJ; Noer A; Nagymihály R; Josifovska N; Andjelic S; Veréb Z; Facskó A; Moe MC; Petrovski G
    PLoS One; 2015; 10(11):e0143053. PubMed ID: 26580800
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide analysis suggests a differential microRNA signature associated with normal and diabetic human corneal limbus.
    Kulkarni M; Leszczynska A; Wei G; Winkler MA; Tang J; Funari VA; Deng N; Liu Z; Punj V; Deng SX; Ljubimov AV; Saghizadeh M
    Sci Rep; 2017 Jun; 7(1):3448. PubMed ID: 28615632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Culture of corneal limbal epithelial stem cells: experience from benchtop to bedside in a tertiary care hospital in India.
    Sharma S; Tandon R; Mohanty S; Sharma N; M V; Sen S; Kashyap S; Singh N
    Cornea; 2011 Nov; 30(11):1223-32. PubMed ID: 21808195
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of culture medium and carrier on explant culture of human limbal epithelium: A comparison of ultrastructure, keratin profile and gene expression.
    Pathak M; Olstad OK; Drolsum L; Moe MC; Smorodinova N; Kalasova S; Jirsova K; Nicolaissen B; Noer A
    Exp Eye Res; 2016 Dec; 153():122-132. PubMed ID: 27702552
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SSEA4 is a potential negative marker for the enrichment of human corneal epithelial stem/progenitor cells.
    Truong TT; Huynh K; Nakatsu MN; Deng SX
    Invest Ophthalmol Vis Sci; 2011 Aug; 52(9):6315-20. PubMed ID: 21685344
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of corneal pannus removed from patients with total limbal stem cell deficiency.
    Espana EM; Di Pascuale MA; He H; Kawakita T; Raju VK; Liu CY; Tseng SC
    Invest Ophthalmol Vis Sci; 2004 Sep; 45(9):2961-6. PubMed ID: 15326108
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of Notch-1 expression in the limbal basal epithelium.
    Thomas PB; Liu YH; Zhuang FF; Selvam S; Song SW; Smith RE; Trousdale MD; Yiu SC
    Mol Vis; 2007 Mar; 13():337-44. PubMed ID: 17392684
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phenotypic characterization of human corneal epithelial cells expanded ex vivo from limbal explant and single cell cultures.
    Kim HS; Jun Song X; de Paiva CS; Chen Z; Pflugfelder SC; Li DQ
    Exp Eye Res; 2004 Jul; 79(1):41-9. PubMed ID: 15183099
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of ex vivo cultured limbal, conjunctival, and oral mucosal cells: A comparative study with implications in transplantation medicine.
    Dhamodaran K; Subramani M; Jeyabalan N; Ponnalagu M; Chevour P; Shetty R; Matalia H; Shetty R; Prince SE; Das D
    Mol Vis; 2015; 21():828-45. PubMed ID: 26283864
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular profile of organ culture-stored corneal epithelium: LGR5 is a potential new phenotypic marker of residual human corneal limbal epithelial stem cells.
    Brzeszczynska J; Ramaesh K; Dhillon B; Ross JA
    Int J Mol Med; 2012 May; 29(5):871-6. PubMed ID: 22322201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of the histology, gene expression profile, and phenotype of cultured human limbal epithelial cells from different limbal regions.
    Utheim TP; Raeder S; Olstad OK; Utheim ØA; de La Paz M; Cheng R; Huynh TT; Messelt E; Roald B; Lyberg T
    Invest Ophthalmol Vis Sci; 2009 Nov; 50(11):5165-72. PubMed ID: 19578011
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Serial analysis of gene expression (SAGE) in the rat limbal and central corneal epithelium.
    Adachi W; Ulanovsky H; Li Y; Norman B; Davis J; Piatigorsky J
    Invest Ophthalmol Vis Sci; 2006 Sep; 47(9):3801-10. PubMed ID: 16936091
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human corneal epithelial basement membrane and integrin alterations in diabetes and diabetic retinopathy.
    Ljubimov AV; Huang ZS; Huang GH; Burgeson RE; Gullberg D; Miner JH; Ninomiya Y; Sado Y; Kenney MC
    J Histochem Cytochem; 1998 Sep; 46(9):1033-41. PubMed ID: 9705969
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic spatiotemporal expression pattern of limbal stem cell putative biomarkers during mouse development.
    Guo ZH; Zeng YM; Lin JS
    Exp Eye Res; 2020 Mar; 192():107915. PubMed ID: 31911164
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reversal of dual epigenetic repression of non-canonical Wnt-5a normalises diabetic corneal epithelial wound healing and stem cells.
    Shah R; Spektor TM; Weisenberger DJ; Ding H; Patil R; Amador C; Song XY; Chun ST; Inzalaco J; Turjman S; Ghiam S; Jeong-Kim J; Tolstoff S; Yampolsky SV; Sawant OB; Rabinowitz YS; Maguen E; Hamrah P; Svendsen CN; Saghizadeh M; Ljubimova JY; Kramerov AA; Ljubimov AV
    Diabetologia; 2023 Oct; 66(10):1943-1958. PubMed ID: 37460827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tandem scanning confocal microscopic analysis of differences between epithelial healing in limbal stem cell deficiency and normal corneal reepithelialization in rabbits.
    Cho BJ; Djalilian AR; Holland EJ
    Cornea; 1998 Jan; 17(1):68-73. PubMed ID: 9436883
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cytokeratin 8 is expressed in human corneoconjunctival epithelium, particularly in limbal epithelial cells.
    Merjava S; Brejchova K; Vernon A; Daniels JT; Jirsova K
    Invest Ophthalmol Vis Sci; 2011 Feb; 52(2):787-94. PubMed ID: 20926822
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Easy xeno-free and feeder-free method for isolating and growing limbal stromal and epithelial stem cells of the human cornea.
    Ghoubay-Benallaoua D; de Sousa C; Martos R; Latour G; Schanne-Klein MC; Dupin E; Borderie V
    PLoS One; 2017; 12(11):e0188398. PubMed ID: 29149196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of culture media for ex vivo cultivation of limbal epithelial progenitor cells.
    Loureiro RR; Cristovam PC; Martins CM; Covre JL; Sobrinho JA; Ricardo JR; Hazarbassanov RM; Höfling-Lima AL; Belfort R; Nishi M; Gomes JÁ
    Mol Vis; 2013; 19():69-77. PubMed ID: 23378720
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sphere-forming cells from peripheral cornea demonstrate the ability to repopulate the ocular surface.
    Mathan JJ; Ismail S; McGhee JJ; McGhee CN; Sherwin T
    Stem Cell Res Ther; 2016 Jun; 7(1):81. PubMed ID: 27250558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.