These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
45 related articles for article (PubMed ID: 21866702)
1. [Reactivity and function of cysteine residues in imidase from Pseudomonas putida YZ-26]. Niu L; Liu X; Shi Y Wei Sheng Wu Xue Bao; 2011 Jun; 51(6):776-82. PubMed ID: 21866702 [TBL] [Abstract][Full Text] [Related]
2. Characterization of zinc-binding properties of a novel imidase from Pseudomonas putida YZ-26. Shi YW; Liu XQ; Shi P; Zhang XY Arch Biochem Biophys; 2010 Feb; 494(1):1-6. PubMed ID: 19931221 [TBL] [Abstract][Full Text] [Related]
3. Gene cloning, expression, and substrate specificity of an imidase from the strain Pseudomonas putida YZ-26. Shi YW; Cui LF; Yuan JM Curr Microbiol; 2007 Jul; 55(1):61-4. PubMed ID: 17534563 [TBL] [Abstract][Full Text] [Related]
4. Substitution of Glu122 by glutamine revealed the function of the second water molecule as a proton donor in the binuclear metal enzyme creatininase. Yamashita K; Nakajima Y; Matsushita H; Nishiya Y; Yamazawa R; Wu YF; Matsubara F; Oyama H; Ito K; Yoshimoto T J Mol Biol; 2010 Mar; 396(4):1081-96. PubMed ID: 20043918 [TBL] [Abstract][Full Text] [Related]
5. Using directed evolution to probe the substrate specificity of mandelamide hydrolase. Wang PF; Yep A; Kenyon GL; McLeish MJ Protein Eng Des Sel; 2009 Feb; 22(2):103-10. PubMed ID: 19074156 [TBL] [Abstract][Full Text] [Related]
6. Quantitative analysis and functional evaluation of zinc ion in the D-hydantoinase from Pseudomonas putida YZ-26. Zhang X; Yuan J; Niu L; Liang A Biometals; 2010 Feb; 23(1):71-81. PubMed ID: 19890726 [TBL] [Abstract][Full Text] [Related]
7. A ZnS(4) structural zinc site in the Helicobacter pylori ferric uptake regulator. Vitale S; Fauquant C; Lascoux D; Schauer K; Saint-Pierre C; Michaud-Soret I Biochemistry; 2009 Jun; 48(24):5582-91. PubMed ID: 19419176 [TBL] [Abstract][Full Text] [Related]
8. The role of individual cysteine residues in the processing, structure, and function of human macrophage colony-stimulating factor. Deng P; Wang YL; Pattengale PK; Rettenmier CW Biochem Biophys Res Commun; 1996 Nov; 228(2):557-66. PubMed ID: 8920951 [TBL] [Abstract][Full Text] [Related]
9. Amino acid residues involved in reversible thiol formation and zinc ion binding in the Streptomyces reticuli redox regulator FurS. Ortiz de Orué Lucana D; Tröller M; Schrempf H Mol Genet Genomics; 2003 Feb; 268(5):618-27. PubMed ID: 12589436 [TBL] [Abstract][Full Text] [Related]
10. Effect of cysteine residues on the activity of arginyl-tRNA synthetase from Escherichia coli. Liu M; Huang Y; Wu J; Wang E; Wang Y Biochemistry; 1999 Aug; 38(34):11006-11. PubMed ID: 10460155 [TBL] [Abstract][Full Text] [Related]
11. Cysteine as a modulator residue in the active site of xenobiotic reductase A: a structural, thermodynamic and kinetic study. Spiegelhauer O; Mende S; Dickert F; Knauer SH; Ullmann GM; Dobbek H J Mol Biol; 2010 Apr; 398(1):66-82. PubMed ID: 20206186 [TBL] [Abstract][Full Text] [Related]
12. The flexibility of the non-conservative region at the C terminus of D-hydantoinase from Pseudomonas putida YZ-26 is extremely limited. Zhang XY; Niu LX; Shi YW; Yuan JM Appl Biochem Biotechnol; 2008 Mar; 144(3):237-47. PubMed ID: 18556813 [TBL] [Abstract][Full Text] [Related]
13. Identification of the two zinc-bound cysteines in the ferric uptake regulation protein from Escherichia coli: chemical modification and mass spectrometry analysis. Gonzalez de Peredo A; Saint-Pierre C; Adrait A; Jacquamet L; Latour JM; Michaud-Soret I; Forest E Biochemistry; 1999 Jun; 38(26):8582-9. PubMed ID: 10387106 [TBL] [Abstract][Full Text] [Related]
14. Glutathione-independent formaldehyde dehydrogenase from Pseudomons putida: survey of functional groups with special regard for cysteine residues. Tsuru D; Oda N; Matsuo Y; Ishikawa S; Ito K; Yoshimoto T Biosci Biotechnol Biochem; 1997 Aug; 61(8):1354-7. PubMed ID: 9301119 [TBL] [Abstract][Full Text] [Related]
15. Site-directed mutagenesis and molecular modelling studies show the role of Asp82 and cysteines in rat acylase 1, a member of the M20 family. Herga S; Brutus A; Vitale RM; Miche H; Perrier J; Puigserver A; Scaloni A; Giardina T Biochem Biophys Res Commun; 2005 May; 330(2):540-6. PubMed ID: 15796916 [TBL] [Abstract][Full Text] [Related]
16. The role of cysteine residues in tellurite resistance mediated by the TehAB determinant. Dyllick-Brenzinger M; Liu M; Winstone TL; Taylor DE; Turner RJ Biochem Biophys Res Commun; 2000 Oct; 277(2):394-400. PubMed ID: 11032735 [TBL] [Abstract][Full Text] [Related]
17. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38. Johnson AR; Chen YW; Dekker EE Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233 [TBL] [Abstract][Full Text] [Related]
18. Crystal structure of the leucine aminopeptidase from Pseudomonas putida reveals the molecular basis for its enantioselectivity and broad substrate specificity. Kale A; Pijning T; Sonke T; Dijkstra BW; Thunnissen AM J Mol Biol; 2010 May; 398(5):703-14. PubMed ID: 20359484 [TBL] [Abstract][Full Text] [Related]
19. Molecular basis of substrate recognition in D-3-hydroxybutyrate dehydrogenase from Pseudomonas putida. Feller C; Günther R; Hofmann HJ; Grunow M Chembiochem; 2006 Sep; 7(9):1410-8. PubMed ID: 16888731 [TBL] [Abstract][Full Text] [Related]
20. Mutational analysis of the hydantoin hydrolysis pathway in Pseudomonas putida RU-KM3S. Matcher GF; Burton SG; Dorrington RA Appl Microbiol Biotechnol; 2004 Sep; 65(4):391-400. PubMed ID: 15064875 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]