These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 21866869)
1. [Mutational analysis of the ribC gene of Bacillus subtilis]. Karelov DV; Kreneva RA; Érraĭs Lopes L; Perumov DA; Mironov AS Genetika; 2011 Jun; 47(6):856-61. PubMed ID: 21866869 [TBL] [Abstract][Full Text] [Related]
2. The bifunctional flavokinase/flavin adenine dinucleotide synthetase from Streptomyces davawensis produces inactive flavin cofactors and is not involved in resistance to the antibiotic roseoflavin. Grill S; Busenbender S; Pfeiffer M; Köhler U; Mack M J Bacteriol; 2008 Mar; 190(5):1546-53. PubMed ID: 18156273 [TBL] [Abstract][Full Text] [Related]
3. [Analysis of an operator-like structure, regulating the activity of the ribC gene in Bacillus subtilis]. Kreneva RA; Polanuer BM; Solov'eva IM; Perumov DA Genetika; 1999 Mar; 35(2):409-11. PubMed ID: 10368790 [TBL] [Abstract][Full Text] [Related]
4. The riboflavin kinase encoding gene ribR of Bacillus subtilis is a part of a 10 kb operon, which is negatively regulated by the yrzC gene product. Solovieva IM; Kreneva RA; Errais Lopes L; Perumov DA FEMS Microbiol Lett; 2005 Feb; 243(1):51-8. PubMed ID: 15668000 [TBL] [Abstract][Full Text] [Related]
5. [Study of the mechanism of regulating the activity of the ribC gene in Bacillus subtilis]. Kreneva RA; Solov'eva IM; Erraĭs LL; Mironov AS; Perumov DA Genetika; 2001 Sep; 37(9):1300-3. PubMed ID: 11642135 [TBL] [Abstract][Full Text] [Related]
7. Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC. Mack M; van Loon AP; Hohmann HP J Bacteriol; 1998 Feb; 180(4):950-5. PubMed ID: 9473052 [TBL] [Abstract][Full Text] [Related]
8. The ribR gene encodes a monofunctional riboflavin kinase which is involved in regulation of the Bacillus subtilis riboflavin operon. Solovieva IM; Kreneva RA; Leak DJ; Perumov DA Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():67-73. PubMed ID: 10206712 [TBL] [Abstract][Full Text] [Related]
9. [Primary structure and functional activity of the Bacillus subtilis ribC gene]. Gusarov II; Kreneva RA; Rybak KV; Podcherniaev DA; Iomantas IuV; Kolibaba LG; Polanuer BM; Kozlov IuI; Perumov DA Mol Biol (Mosk); 1997; 31(5):820-5. PubMed ID: 9454067 [No Abstract] [Full Text] [Related]
10. Molecular cloning and characterisation of the ribC gene from Bacillus subtilis: a point mutation in ribC results in riboflavin overproduction. Coquard D; Huecas M; Ott M; van Dijl JM; van Loon AP; Hohmann HP Mol Gen Genet; 1997 Mar; 254(1):81-4. PubMed ID: 9108293 [TBL] [Abstract][Full Text] [Related]
11. [Cloning and biochemical identification of the ribR gene in Bacillus subtilis]. Solov'eva IM; Kreneva RA; Polanuer BM; Kozlov IuI; Perumov DA Genetika; 1998 Jun; 34(6):839-42. PubMed ID: 9719928 [TBL] [Abstract][Full Text] [Related]
12. RibR, a possible regulator of the Bacillus subtilis riboflavin biosynthetic operon, in vivo interacts with the 5'-untranslated leader of rib mRNA. Higashitsuji Y; Angerer A; Berghaus S; Hobl B; Mack M FEMS Microbiol Lett; 2007 Sep; 274(1):48-54. PubMed ID: 17590224 [TBL] [Abstract][Full Text] [Related]
13. Flavokinase and FAD synthetase from Bacillus subtilis specific for reduced flavins. Kearney EB; Goldenberg J; Lipsick J; Perl M J Biol Chem; 1979 Oct; 254(19):9551-7. PubMed ID: 226520 [TBL] [Abstract][Full Text] [Related]
14. Key residues at the riboflavin kinase catalytic site of the bifunctional riboflavin kinase/FMN adenylyltransferase from Corynebacterium ammoniagenes. Serrano A; Frago S; Herguedas B; Martínez-Júlvez M; Velázquez-Campoy A; Medina M Cell Biochem Biophys; 2013 Jan; 65(1):57-68. PubMed ID: 22892871 [TBL] [Abstract][Full Text] [Related]
15. Molecular analysis of riboflavin synthesis genes in Bartonella henselae and use of the ribC gene for differentiation of Bartonella species by PCR. Bereswill S; Hinkelmann S; Kist M; Sander A J Clin Microbiol; 1999 Oct; 37(10):3159-66. PubMed ID: 10488170 [TBL] [Abstract][Full Text] [Related]
16. Oligomeric state in the crystal structure of modular FAD synthetase provides insights into its sequential catalysis in prokaryotes. Herguedas B; Martínez-Júlvez M; Frago S; Medina M; Hermoso JA J Mol Biol; 2010 Jul; 400(2):218-30. PubMed ID: 20471397 [TBL] [Abstract][Full Text] [Related]
17. The FAD synthetase from the human pathogen Streptococcus pneumoniae: a bifunctional enzyme exhibiting activity-dependent redox requirements. Sebastián M; Lira-Navarrete E; Serrano A; Marcuello C; Velázquez-Campoy A; Lostao A; Hurtado-Guerrero R; Medina M; Martínez-Júlvez M Sci Rep; 2017 Aug; 7(1):7609. PubMed ID: 28790457 [TBL] [Abstract][Full Text] [Related]
18. Use of the riboflavin synthase gene (ribC) as a model for development of an essential gene disruption and complementation system for Haemophilus influenzae. Saeed-Kothe A; Yang W; Mills SD Appl Environ Microbiol; 2004 Jul; 70(7):4136-43. PubMed ID: 15240293 [TBL] [Abstract][Full Text] [Related]
19. Structural insights into the synthesis of FMN in prokaryotic organisms. Herguedas B; Lans I; Sebastián M; Hermoso JA; Martínez-Júlvez M; Medina M Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2526-42. PubMed ID: 26627660 [TBL] [Abstract][Full Text] [Related]