BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 21866886)

  • 1. Active-site models for the nickel-iron hydrogenases: effects of ligands on reactivity and catalytic properties.
    Carroll ME; Barton BE; Gray DL; Mack AE; Rauchfuss TB
    Inorg Chem; 2011 Oct; 50(19):9554-63. PubMed ID: 21866886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixed-valence nickel-iron dithiolate models of the [NiFe]-hydrogenase active site.
    Schilter D; Nilges MJ; Chakrabarti M; Lindahl PA; Rauchfuss TB; Stein M
    Inorg Chem; 2012 Feb; 51(4):2338-48. PubMed ID: 22304696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Connecting [NiFe]- and [FeFe]-hydrogenases: mixed-valence nickel-iron dithiolates with rotated structures.
    Schilter D; Rauchfuss TB; Stein M
    Inorg Chem; 2012 Aug; 51(16):8931-41. PubMed ID: 22838645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nickel-iron dithiolates related to the deactivated [NiFe]-hydrogenases.
    Schilter D; Rauchfuss TB
    Dalton Trans; 2012 Nov; 41(43):13324-9. PubMed ID: 22992700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nickel-iron dithiolato hydrides relevant to the [NiFe]-hydrogenase active site.
    Barton BE; Whaley CM; Rauchfuss TB; Gray DL
    J Am Chem Soc; 2009 May; 131(20):6942-3. PubMed ID: 19413314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydride-containing models for the active site of the nickel-iron hydrogenases.
    Barton BE; Rauchfuss TB
    J Am Chem Soc; 2010 Oct; 132(42):14877-85. PubMed ID: 20925337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of the electronic structure and the Ni-Fe distance in heterobimetallic models for the active site in [NiFe]hydrogenase.
    Zhu W; Marr AC; Wang Q; Neese F; Spencer DJ; Blake AJ; Cooke PA; Wilson C; Schröder M
    Proc Natl Acad Sci U S A; 2005 Dec; 102(51):18280-5. PubMed ID: 16352727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and structural characterization of the mono- and diphosphine-containing diiron propanedithiolate complexes related to [FeFe]-hydrogenases. Biomimetic H2 evolution catalyzed by (mu-PDT)Fe2(CO)4[(Ph2P)2N(n-Pr)].
    Song LC; Li CG; Ge JH; Yang ZY; Wang HT; Zhang J; Hu QM
    J Inorg Biochem; 2008 Nov; 102(11):1973-9. PubMed ID: 18783833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiolate-bridged dinuclear iron(tris-carbonyl)-nickel complexes relevant to the active site of [NiFe] hydrogenase.
    Ohki Y; Yasumura K; Kuge K; Tanino S; Ando M; Li Z; Tatsumi K
    Proc Natl Acad Sci U S A; 2008 Jun; 105(22):7652-7. PubMed ID: 18511566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation, facile deprotonation, and rapid H/D exchange of the mu-hydride diiron model complexes of the [FeFe]-hydrogenase containing a pendant amine in a chelating diphosphine ligand.
    Wang N; Wang M; Liu J; Jin K; Chen L; Sun L
    Inorg Chem; 2009 Dec; 48(24):11551-8. PubMed ID: 20000647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isomerization of the hydride complexes [HFe2(SR)2(PR3)(x)(CO)(6-x)]+ (x = 2, 3, 4) relevant to the active site models for the [FeFe]-hydrogenases.
    Barton BE; Zampella G; Justice AK; De Gioia L; Rauchfuss TB; Wilson SR
    Dalton Trans; 2010 Mar; 39(12):3011-9. PubMed ID: 20221534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mononuclear nickel(II) dithiolate complexes with chelating diphosphines: Insight into protonation and electrochemical proton reduction.
    Gu XL; Li JR; Li QL; Guo Y; Jing XB; Chen ZB; Zhao PH
    J Inorg Biochem; 2021 Jun; 219():111449. PubMed ID: 33798827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalysis of H(2)/D(2) scrambling and other H/D exchange processes by [Fe]-hydrogenase model complexes.
    Zhao X; Georgakaki IP; Miller ML; Mejia-Rodriguez R; Chiang CY; Darensbourg MY
    Inorg Chem; 2002 Jul; 41(15):3917-28. PubMed ID: 12132916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterobimetallic [NiFe] Complexes Containing Mixed CO/CN
    Perotto CU; Sodipo CL; Jones GJ; Tidey JP; Blake AJ; Lewis W; Davies ES; McMaster J; Schröder M
    Inorg Chem; 2018 Mar; 57(5):2558-2569. PubMed ID: 29465237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and structure of analogues for the Ni-Fe site in hydrogenase enzymes.
    Jiang J; Maruani M; Solaimanzadeh J; Lo W; Koch SA; Millar M
    Inorg Chem; 2009 Jul; 48(14):6359-61. PubMed ID: 20507106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ferrous Carbonyl Dithiolates as Precursors to FeFe, FeCo, and FeMn Carbonyl Dithiolates.
    Carroll ME; Chen J; Gray DE; Lansing JC; Rauchfuss TB; Schilter D; Volkers PI; Wilson SR
    Organometallics; 2014 Feb; 33(4):858-867. PubMed ID: 24803716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen activation by biomimetic [NiFe]-hydrogenase model containing protected cyanide cofactors.
    Manor BC; Rauchfuss TB
    J Am Chem Soc; 2013 Aug; 135(32):11895-900. PubMed ID: 23899049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protonation of nickel-iron hydrogenase models proceeds after isomerization at nickel.
    Huynh MT; Schilter D; Hammes-Schiffer S; Rauchfuss TB
    J Am Chem Soc; 2014 Sep; 136(35):12385-95. PubMed ID: 25094041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalized nickel(II)-iron(II) dithiolates as biomimetic models of [NiFe]-H
    Song LC; Wang YP; Dong YX; Yang XY
    Dalton Trans; 2023 Mar; 52(12):3755-3768. PubMed ID: 36857705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Models of the Ni-L and Ni-SIa States of the [NiFe]-Hydrogenase Active Site.
    Chambers GM; Huynh MT; Li Y; Hammes-Schiffer S; Rauchfuss TB; Reijerse E; Lubitz W
    Inorg Chem; 2016 Jan; 55(2):419-31. PubMed ID: 26421729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.