BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 21866927)

  • 1. Microcontact printing of monodiamond nanoparticles: an effective route to patterned diamond structure fabrication.
    Zhuang H; Song B; Staedler T; Jiang X
    Langmuir; 2011 Oct; 27(19):11981-9. PubMed ID: 21866927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct deposition of patterned nanocrystalline CVD diamond using an electrostatic self-assembly method with nanodiamond particles.
    Lee SK; Kim JH; Jeong MG; Song MJ; Lim DS
    Nanotechnology; 2010 Dec; 21(50):505302. PubMed ID: 21098933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatic grafting of diamond nanoparticles: a versatile route to nanocrystalline diamond thin films.
    Girard HA; Perruchas S; Gesset C; Chaigneau M; Vieille L; Arnault JC; Bergonzo P; Boilot JP; Gacoin T
    ACS Appl Mater Interfaces; 2009 Dec; 1(12):2738-46. PubMed ID: 20356151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile transfer of thickness controllable poly(methyl methacrylate) patterns on a nanometer scale onto SiO2 substrates via microcontact printing combined with simplified Langmuir-Schaefer technique.
    Kim YK; Kim DI; Park J; Shin G; Kim GT; Ha JS
    Langmuir; 2008 Dec; 24(24):14289-95. PubMed ID: 19360969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microscale features and surface chemical functionality patterned by electron beam lithography: a novel route to poly(dimethylsiloxane) (PDMS) stamp fabrication.
    Russell MT; Pingree LS; Hersam MC; Marks TJ
    Langmuir; 2006 Jul; 22(15):6712-8. PubMed ID: 16831018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creating patterned carbon nanotube catalysts through the microcontact printing of block copolymer micellar thin films.
    Bennett RD; Hart AJ; Miller AC; Hammond PT; Irvine DJ; Cohen RE
    Langmuir; 2006 Sep; 22(20):8273-6. PubMed ID: 16981735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrathin Nanocrystalline Diamond Films with Silicon Vacancy Color Centers via Seeding by 2 nm Detonation Nanodiamonds.
    Stehlik S; Varga M; Stenclova P; Ondic L; Ledinsky M; Pangrac J; Vanek O; Lipov J; Kromka A; Rezek B
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38842-38853. PubMed ID: 29028298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(dimethylsiloxane) contamination in microcontact printing and its influence on patterning oligonucleotides.
    Thibault C; Séverac C; Mingotaud AF; Vieu C; Mauzac M
    Langmuir; 2007 Oct; 23(21):10706-14. PubMed ID: 17803329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion of alkanethiols in PDMS and its implications on microcontact printing (muCP).
    Balmer TE; Schmid H; Stutz R; Delamarche E; Michel B; Spencer ND; Wolf H
    Langmuir; 2005 Jan; 21(2):622-32. PubMed ID: 15641832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterning of nanodiamond tracks and nanocrystalline diamond films using a micropipette for additive direct-write processing.
    Taylor AC; Edgington R; Jackman RB
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6490-5. PubMed ID: 25669757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth kinetics and morphology of self-assembled monolayers formed by contact printing 7-octenyltrichlorosilane and octadecyltrichlorosilane on Si(100) wafers.
    Harada Y; Girolami GS; Nuzzo RG
    Langmuir; 2004 Dec; 20(25):10878-88. PubMed ID: 15568837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanopatterning from the gas phase: high resolution soft lithographic patterning of organosilane thin films.
    George A; Blank DH; ten Elshof JE
    Langmuir; 2009 Dec; 25(23):13298-301. PubMed ID: 19877700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light stamping lithography: microcontact printing without inks.
    Park KS; Seo EK; Do YR; Kim K; Sung MM
    J Am Chem Soc; 2006 Jan; 128(3):858-65. PubMed ID: 16417376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemically patterned flat stamps for microcontact printing.
    Sharpe RB; Burdinski D; Huskens J; Zandvliet HJ; Reinhoudt DN; Poelsema B
    J Am Chem Soc; 2005 Jul; 127(29):10344-9. PubMed ID: 16028946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of stamp deformation on the quality of microcontact printing: theory and experiment.
    Sharp KG; Blackman GS; Glassmaker NJ; Jagota A; Hui CY
    Langmuir; 2004 Jul; 20(15):6430-8. PubMed ID: 15248733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro/nanopatterning of proteins via contact printing using high aspect ratio PMMA stamps and nanoimprint apparatus.
    Pla-Roca M; Fernandez JG; Mills CA; Martínez E; Samitier J
    Langmuir; 2007 Jul; 23(16):8614-8. PubMed ID: 17592861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a templated approach to fabricate diamond patterns on various substrates.
    Shimoni O; Cervenka J; Karle TJ; Fox K; Gibson BC; Tomljenovic-Hanic S; Greentree AD; Prawer S
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8894-902. PubMed ID: 24878519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polycrystalline diamond on self-assembled detonation nanodiamond: a viable route for fabrication of all-diamond preformed microcomponents.
    Terranova ML; Orlanducci S; Tamburri E; Guglielmotti V; Toschi F; Hampai D; Rossi M
    Nanotechnology; 2008 Oct; 19(41):415601. PubMed ID: 21832646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negative printing by soft lithography.
    Ong JK; Moore D; Kane J; Saraf RF
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14278-85. PubMed ID: 25095721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microcontact printing-based fabrication of digital microfluidic devices.
    Watson MW; Abdelgawad M; Ye G; Yonson N; Trottier J; Wheeler AR
    Anal Chem; 2006 Nov; 78(22):7877-85. PubMed ID: 17105183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.