These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 21867100)
1. Active colloidal suspensions exhibit polar order under gravity. Enculescu M; Stark H Phys Rev Lett; 2011 Jul; 107(5):058301. PubMed ID: 21867100 [TBL] [Abstract][Full Text] [Related]
3. Sedimentation and effective temperature of active colloidal suspensions. Palacci J; Cottin-Bizonne C; Ybert C; Bocquet L Phys Rev Lett; 2010 Aug; 105(8):088304. PubMed ID: 20868136 [TBL] [Abstract][Full Text] [Related]
4. Sedimentation and polar order of active bottom-heavy particles. Wolff K; Hahn AM; Stark H Eur Phys J E Soft Matter; 2013 Apr; 36(4):9858. PubMed ID: 23612748 [TBL] [Abstract][Full Text] [Related]
5. Anomalous diffusion for inertial particles under gravity in parallel flows. Martins Afonso M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063021. PubMed ID: 25019893 [TBL] [Abstract][Full Text] [Related]
6. Gravitational stability of suspensions of attractive colloidal particles. Kim C; Liu Y; Kühnle A; Hess S; Viereck S; Danner T; Mahadevan L; Weitz DA Phys Rev Lett; 2007 Jul; 99(2):028303. PubMed ID: 17678267 [TBL] [Abstract][Full Text] [Related]
7. Hydrodynamic interactions and the diffusivity of spheroidal particles. Marath NK; Wettlaufer JS J Chem Phys; 2019 Jul; 151(2):024107. PubMed ID: 31301717 [TBL] [Abstract][Full Text] [Related]
12. Investigation of the nonlinear effects during the sedimentation process of a charged colloidal particle by direct numerical simulation. Keller F; Feist M; Nirschl H; Dörfler W J Colloid Interface Sci; 2010 Apr; 344(1):228-36. PubMed ID: 20097350 [TBL] [Abstract][Full Text] [Related]
13. Gel transition in adhesive hard-sphere colloidal dispersions: the role of gravitational effects. Kim JM; Fang J; Eberle AP; Castañeda-Priego R; Wagner NJ Phys Rev Lett; 2013 May; 110(20):208302. PubMed ID: 25167458 [TBL] [Abstract][Full Text] [Related]
14. Anisotropic diffusion of concentrated hard-sphere colloids near a hard wall studied by evanescent wave dynamic light scattering. Michailidou VN; Swan JW; Brady JF; Petekidis G J Chem Phys; 2013 Oct; 139(16):164905. PubMed ID: 24182077 [TBL] [Abstract][Full Text] [Related]
15. Study of translational and rotational dynamics of birefringent colloidal particles by depolarized light scattering in the far- and near-field regimes. Escobedo-Sánchez MA; De la Cruz-Burelo HA; Arauz-Lara JL; Haro-Pérez C; Rojas-Ochoa LF J Chem Phys; 2015 Jul; 143(4):044902. PubMed ID: 26233159 [TBL] [Abstract][Full Text] [Related]
16. Colloidal dynamics: influence of diffusion, inertia and colloidal forces on cluster formation. Kovalchuk N; Starov V; Langston P; Hilal N; Zhdanov V J Colloid Interface Sci; 2008 Sep; 325(2):377-85. PubMed ID: 18619605 [TBL] [Abstract][Full Text] [Related]
17. A Lattice-Boltzmann model for suspensions of self-propelling colloidal particles. Ramachandran S; Sunil Kumar PB; Pagonabarraga I Eur Phys J E Soft Matter; 2006 Jun; 20(2):151-8. PubMed ID: 16779527 [TBL] [Abstract][Full Text] [Related]
18. Gravitational settling effects on unit cell predictions of colloidal retention in porous media in the absence of energy barriers. Ma H; Pazmino EF; Johnson WP Environ Sci Technol; 2011 Oct; 45(19):8306-12. PubMed ID: 21875031 [TBL] [Abstract][Full Text] [Related]
19. Self-induced polar order of active Brownian particles in a harmonic trap. Hennes M; Wolff K; Stark H Phys Rev Lett; 2014 Jun; 112(23):238104. PubMed ID: 24972231 [TBL] [Abstract][Full Text] [Related]
20. Translational and rotational near-wall diffusion of spherical colloids studied by evanescent wave scattering. Lisicki M; Cichocki B; Rogers SA; Dhont JK; Lang PR Soft Matter; 2014 Jun; 10(24):4312-23. PubMed ID: 24788942 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]