These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 21867130)
1. Elastic Maier-Saupe-Zwanzig model and some properties of nematic elastomers. Liarte DB; Salinas SR; Yokoi CS Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011124. PubMed ID: 21867130 [TBL] [Abstract][Full Text] [Related]
2. Biaxial nematic phase in the Maier-Saupe model for a mixture of discs and cylinders. Henriques EF; Salinas SR Eur Phys J E Soft Matter; 2012 Feb; 35(2):14. PubMed ID: 22367603 [TBL] [Abstract][Full Text] [Related]
3. Theory of microphase separation on side-chain liquid-crystalline polymers with flexible spacers. Hernández-Jiménez M; Westfahl H Eur Phys J E Soft Matter; 2007 May; 23(1):31-42. PubMed ID: 17541501 [TBL] [Abstract][Full Text] [Related]
4. Uniaxial and biaxial structures in the elastic Maier-Saupe model. Petri A; Liarte DB; Salinas SR Phys Rev E; 2018 Jan; 97(1-1):012705. PubMed ID: 29448454 [TBL] [Abstract][Full Text] [Related]
5. Effect of an external magnetic field on the nematic-isotropic phase transition in mesogenic systems of uniaxial and biaxial molecules: a Monte Carlo study. Ghoshal N; Mukhopadhyay K; Roy SK Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042505. PubMed ID: 24827267 [TBL] [Abstract][Full Text] [Related]
6. Modeling the polydomain-monodomain transition of liquid crystal elastomers. Whitmer JK; Roberts TF; Shekhar R; Abbott NL; de Pablo JJ Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):020502. PubMed ID: 23496448 [TBL] [Abstract][Full Text] [Related]
13. Dynamics of nematic liquid crystal with quenched disorder in the random dilution and random field regimes. Marinelli M; Mercuri F; Paoloni S; Zammit U Phys Rev Lett; 2005 Dec; 95(23):237801. PubMed ID: 16384348 [TBL] [Abstract][Full Text] [Related]
14. Real-space renormalization-group treatment of the Maier-Saupe-Zwanzig model for biaxial nematic structures. Dos Santos CTG; Vieira AP; Salinas SR; Andrade RFS Phys Rev E; 2021 Mar; 103(3-1):032111. PubMed ID: 33862734 [TBL] [Abstract][Full Text] [Related]
16. Volume phase transitions of biaxial nematic elastomers. Matsuyama A Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011707. PubMed ID: 22400583 [TBL] [Abstract][Full Text] [Related]
17. Mechanical properties of monodomain nematic side-chain liquid-crystalline elastomers with homeotropic and in-plane orientation of the director. Rogez D; Martinoty P Eur Phys J E Soft Matter; 2011 Jul; 34(7):69. PubMed ID: 21755436 [TBL] [Abstract][Full Text] [Related]
18. Maier-Saupe model of liquid crystals: isotropic-nematic phase transitions and second-order statistics studied by Shiino's perturbation theory and strongly nonlinear Smoluchowski equations. Frank TD Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041703. PubMed ID: 16383398 [TBL] [Abstract][Full Text] [Related]
19. Maier-Saupe-type theory of ferroelectric nanoparticles in nematic liquid crystals. Lopatina LM; Selinger JV Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041703. PubMed ID: 22181153 [TBL] [Abstract][Full Text] [Related]
20. Theory of elastic interaction of colloidal particles in nematic liquid crystals near one wall and in the nematic cell. Chernyshuk SB; Lev BI Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011707. PubMed ID: 21867196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]