These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 21867140)
1. First-passage-time processes and subordinated Schramm-Loewner evolution. Nezhadhaghighi MG; Rajabpour MA; Rouhani S Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011134. PubMed ID: 21867140 [TBL] [Abstract][Full Text] [Related]
2. Loop-erased random walk on a percolation cluster is compatible with Schramm-Loewner evolution. Daryaei E Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022129. PubMed ID: 25215710 [TBL] [Abstract][Full Text] [Related]
3. Loop-erased random walk on a percolation cluster: crossover from Euclidean to fractal geometry. Daryaei E; Rouhani S Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062101. PubMed ID: 25019719 [TBL] [Abstract][Full Text] [Related]
4. Left passage probability of Schramm-Loewner Evolution. Najafi MN Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062105. PubMed ID: 23848625 [TBL] [Abstract][Full Text] [Related]
6. Global mean first-passage times of random walks on complex networks. Tejedor V; Bénichou O; Voituriez R Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):065104. PubMed ID: 20365216 [TBL] [Abstract][Full Text] [Related]
9. Determining global mean-first-passage time of random walks on Vicsek fractals using eigenvalues of Laplacian matrices. Zhang Z; Wu B; Zhang H; Zhou S; Guan J; Wang Z Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031118. PubMed ID: 20365708 [TBL] [Abstract][Full Text] [Related]
10. Lattice statistical theory of random walks on a fractal-like geometry. Kozak JJ; Garza-López RA; Abad E Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032147. PubMed ID: 24730829 [TBL] [Abstract][Full Text] [Related]
11. Classification of (2+1) -dimensional growing surfaces using Schramm-Loewner evolution. Saberi AA; Dashti-Naserabadi H; Rouhani S Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):020101. PubMed ID: 20866762 [TBL] [Abstract][Full Text] [Related]
13. Protein folding on rugged energy landscapes: conformational diffusion on fractal networks. Lois G; Blawzdziewicz J; O'Hern CS Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051907. PubMed ID: 20866261 [TBL] [Abstract][Full Text] [Related]
14. Survival probability of an immobile target in a sea of evanescent diffusive or subdiffusive traps: a fractional equation approach. Abad E; Yuste SB; Lindenberg K Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061120. PubMed ID: 23367906 [TBL] [Abstract][Full Text] [Related]
15. Geometry controlled anomalous diffusion in random fractal geometries: looking beyond the infinite cluster. Mardoukhi Y; Jeon JH; Metzler R Phys Chem Chem Phys; 2015 Nov; 17(44):30134-47. PubMed ID: 26503611 [TBL] [Abstract][Full Text] [Related]
16. Swarming in three dimensions. Strefler J; Erdmann U; Schimansky-Geier L Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031927. PubMed ID: 18851085 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of entropic transport by intermediates. Mondal D Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011149. PubMed ID: 21867154 [TBL] [Abstract][Full Text] [Related]
18. Fractal model of anomalous diffusion. Gmachowski L Eur Biophys J; 2015 Dec; 44(8):613-21. PubMed ID: 26129728 [TBL] [Abstract][Full Text] [Related]
19. Loewner driving functions for off-critical percolation clusters. Kondo Y; Mitarai N; Nakanishi H Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):050102. PubMed ID: 20364936 [TBL] [Abstract][Full Text] [Related]