These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 21867214)

  • 1. Electrostatics of the protein-water interface and the dynamical transition in proteins.
    Matyushov DV; Morozov AY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011908. PubMed ID: 21867214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanosecond Stokes shift dynamics, dynamical transition, and gigantic reorganization energy of hydrated heme proteins.
    Matyushov DV
    J Phys Chem B; 2011 Sep; 115(36):10715-24. PubMed ID: 21815677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ferroelectric hydration shells around proteins: electrostatics of the protein-water interface.
    LeBard DN; Matyushov DV
    J Phys Chem B; 2010 Jul; 114(28):9246-58. PubMed ID: 20578769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaling analysis of bio-molecular dynamics derived from elastic incoherent neutron scattering experiments.
    Doster W; Nakagawa H; Appavou MS
    J Chem Phys; 2013 Jul; 139(4):045105. PubMed ID: 23902030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical transition, hydrophobic interface, and the temperature dependence of electrostatic fluctuations in proteins.
    Lebard DN; Matyushov DV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061901. PubMed ID: 19256862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamical transition of myoglobin revealed by inelastic neutron scattering.
    Doster W; Cusack S; Petry W
    Nature; 1989 Feb; 337(6209):754-6. PubMed ID: 2918910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ergodicity breaking of iron displacement in heme proteins.
    Seyedi S; Matyushov DV
    Soft Matter; 2017 Nov; 13(44):8188-8201. PubMed ID: 29082406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissipative electro-elastic network model of protein electrostatics.
    Martin DR; Ozkan SB; Matyushov DV
    Phys Biol; 2012 Jun; 9(3):036004. PubMed ID: 22555305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bulk-solvent and hydration-shell fluctuations, similar to alpha- and beta-fluctuations in glasses, control protein motions and functions.
    Fenimore PW; Frauenfelder H; McMahon BH; Young RD
    Proc Natl Acad Sci U S A; 2004 Oct; 101(40):14408-13. PubMed ID: 15448207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A water network within a protein: temperature-dependent water ligation in H64V-metmyoglobin and relaxation to deoxymyoglobin.
    Engler N; Prusakov V; Ostermann A; Parak FG
    Eur Biophys J; 2003 Feb; 31(8):595-607. PubMed ID: 12582819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Change of caged dynamics at T(g) in hydrated proteins: trend of mean squared displacements after correcting for the methyl-group rotation contribution.
    Ngai KL; Capaccioli S; Paciaroni A
    J Chem Phys; 2013 Jun; 138(23):235102. PubMed ID: 23802985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heme-solvent coupling: a Mössbauer study of myoglobin in sucrose.
    Lichtenegger H; Doster W; Kleinert T; Birk A; Sepiol B; Vogl G
    Biophys J; 1999 Jan; 76(1 Pt 1):414-22. PubMed ID: 9876153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydration dependence of myoglobin dynamics studied with elastic neutron scattering, differential scanning calorimetry and broadband dielectric spectroscopy.
    Fomina M; Schirò G; Cupane A
    Biophys Chem; 2014 Jan; 185():25-31. PubMed ID: 24309207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulation of carboxy-myoglobin embedded in a trehalose-water matrix.
    Cottone G; Cordone L; Ciccotti G
    Biophys J; 2001 Feb; 80(2):931-8. PubMed ID: 11159460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The origin of the dynamic transition in proteins.
    Khodadadi S; Pawlus S; Roh JH; Garcia Sakai V; Mamontov E; Sokolov AP
    J Chem Phys; 2008 May; 128(19):195106. PubMed ID: 18500904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mössbauer effect in proteins.
    Young RD; Frauenfelder H; Fenimore PW
    Phys Rev Lett; 2011 Oct; 107(15):158102. PubMed ID: 22107321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Further evidence that interfacial water is the main "driving force" of protein dynamics: a neutron scattering study on perdeuterated C-phycocyanin.
    Combet S; Zanotti JM
    Phys Chem Chem Phys; 2012 Apr; 14(14):4927-34. PubMed ID: 22388956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox-promoting protein motions in rubredoxin.
    Borreguero JM; He J; Meilleur F; Weiss KL; Brown CM; Myles DA; Herwig KW; Agarwal PK
    J Phys Chem B; 2011 Jul; 115(28):8925-36. PubMed ID: 21608980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translational hydration water dynamics drives the protein glass transition.
    Tournier AL; Xu J; Smith JC
    Biophys J; 2003 Sep; 85(3):1871-5. PubMed ID: 12944299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamical transition of myoglobin in a crystal: comparative studies of X-ray crystallography and Mössbauer spectroscopy.
    Chong SH; Joti Y; Kidera A; Go N; Ostermann A; Gassmann A; Parak F
    Eur Biophys J; 2001 Sep; 30(5):319-29. PubMed ID: 11592689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.